BackgroundGarlic is cultivated and consumed worldwide as a popular condiment and green vegetable with medicinal and neutraceutical properties. Garlic cultivars do not produce seeds, and therefore, this plant has not been the subject of either classical breeding or genetic studies. However, recent achievements in fertility restoration in a number of genotypes have led to flowering and seed production, thus enabling genetic studies and breeding in garlic.ResultsA transcriptome catalogue of fertile garlic was produced from multiplexed gene libraries, using RNA collected from various plant organs, including inflorescences and flowers. Over 32 million 250-bp paired-end reads were assembled into an extensive transcriptome of 240,000 contigs. An abundant transcriptome assembled separately from 102,000 highly expressed contigs was annotated and analyzed for gene ontology and metabolic pathways. Organ-specific analysis showed significant variation of gene expression between plant organs, with the highest number of specific reads in inflorescences and flowers. Analysis of the enriched biological processes and molecular functions revealed characteristic patterns for stress response, flower development and photosynthetic activity. Orthologues of key flowering genes were differentially expressed, not only in reproductive tissues, but also in leaves and bulbs, suggesting their role in flower-signal transduction and the bulbing process. More than 100 variants and isoforms of enzymes involved in organosulfur metabolism were differentially expressed and had organ-specific patterns. In addition to plant genes, viral RNA of at least four garlic viruses was detected, mostly in the roots and cloves, whereas only 1–4% of the reads were found in the foliage leaves.ConclusionsThe de novo transcriptome of fertile garlic represents a new resource for research and breeding of this important crop, as well as for the development of effective molecular markers for useful traits, including fertility and seed production, resistance to pests and neutraceutical characteristics.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1212-2) contains supplementary material, which is available to authorized users.
Color and pigment contents are important aspects of fruit quality and consumer acceptance of cucurbit crops. Here, we describe the independent mapping and cloning of a common causative APRR2 gene regulating pigment accumulation in melon and watermelon. We initially show that the APRR2 transcription factor is causative for the qualitative difference between dark and light green rind in both crops. Further analyses establish the link between sequence or expression level variations in the CmAPRR2 gene and pigment content in the rind and flesh of mature melon fruits. A genome-wide association study (GWAS) of young fruit rind color in a panel composed of 177 diverse melon accessions did not result in any significant association, leading to an earlier assumption that multiple genes are involved in shaping the overall phenotypic variation in this trait. Through resequencing of 25 representative accessions and allelism tests between light rind accessions, we show that multiple independent single nucleotide polymorphisms in the CmAPRR2 gene are causative of the light rind phenotype. The multi-haplotypic nature of this gene explains the lack of detection power obtained through genotyping by sequencing-based GWAS and confirms the pivotal role of this gene in shaping fruit color variation in melon. This study demonstrates the power of combining bi- and multi-allelic designs with deep sequencing, to resolve lack of power due to high haplotypic diversity and low allele frequencies. Due to its central role and broad effect on pigment accumulation in fruits, the APRR2 gene is an attractive target for carotenoid bio-fortification of cucurbit crops.
The sugar content of Solanum lycopersicum (tomato) fruit is a primary determinant of taste and quality. Cultivated tomato fruit are characterized by near-equimolar levels of the hexoses glucose and fructose, derived from the hydrolysis of translocated sucrose. As fructose is perceived as approximately twice as sweet as glucose, increasing its concentration at the expense of glucose can improve tomato fruit taste. Introgressions of the Fgr allele from the wild species Solanum habrochaites (LA1777) into cultivated tomato increased the fructose-to-glucose ratio of the ripe fruit by reducing glucose levels and concomitantly increasing fructose levels. In order to identify the function of the Fgr gene, we combined a fine-mapping strategy with RNAseq differential expression analysis of near-isogenic tomato lines. The results indicated that a SWEET protein was strongly upregulated in the lines with a high fructose-to-glucose ratio. Overexpressing the SWEET protein in transgenic tomato plants dramatically reduced the glucose levels and increased the fructose : glucose ratio in the developing fruit, thereby proving the function of the protein. The SWEET protein was localized to the plasma membrane and expression of the SlFgr gene in a yeast line lacking native hexose transporters complemented growth with glucose, but not with fructose. These results indicate that the SlFgr gene encodes a plasma membrane-localized glucose efflux transporter of the SWEET family, the overexpression of which reduces glucose levels and may allow for increased fructose levels. This article identifies the function of the tomato Fgr gene as a SWEET transporter, the upregulation of which leads to a modified sugar accumulation pattern in the fleshy fruit. The results point to the potential of the inedible wild species to improve fruit sugar accumulation via sugar transport mechanisms.
Cannabis sativa produces hundreds of phytocannabinoids and terpenes. Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood. This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells. Ethanol extracts of C. sativa were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Cytotoxic activity was determined using the XTT assay on My-La and HuT-78 cell lines as well as peripheral blood lymphocytes from Sézary patients (SPBL). Annexin V assay and fluorescence-activated cell sorting (FACS) were used to determine apoptosis and cell cycle. RNA sequencing and quantitative PCR were used to determine gene expression. Active cannabis compounds presenting high cytotoxic activity on My-La and HuT-78 cell lines were identified in crude extract fractions designated S4 and S5, and their synergistic mixture was specified. This mixture induced cell cycle arrest and cell apoptosis; a relatively selective apoptosis was also recorded on the malignant CD4 + CD26-SPBL cells. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5. The gene expression profile was distinct in My-La and HuT-78 cells treated with the S4 and S5 synergistic mixture. We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.
Introduction: Colorectal cancer remains the third most common cancer diagnosis and fourth leading cause of cancer-related mortality worldwide. Purified cannabinoids have been reported to prevent proliferation, metastasis, and induce apoptosis in a variety of cancer cell types. However, the active compounds from Cannabis sativa flowers and their interactions remain elusive.Research Aim: This study was aimed to specify the cytotoxic effect of C. sativa-derived extracts on colon cancer cells and adenomatous polyps by identification of active compound(s) and characterization of their interaction.Materials and Methods: Ethanol extracts of C. sativa were analyzed by high-performance liquid chromatography and gas chromatograph/mass spectrometry and their cytotoxic activity was determined using alamarBlue-based assay (Resazurin) and tetrazolium dye-based assay (XTT) on cancer and normal colon cell lines and on dysplastic adenomatous polyp cells. Annexin V Assay and fluorescence-activated cell sorting (FACS) were used to determine apoptosis and cell cycle, and RNA sequencing was used to determine gene expression.Results: The unheated cannabis extracts (C2F), fraction 7 (F7), and fraction 3 (F3) had cytotoxic activity on colon cancer cells, but reduced activity on normal colon cell lines. Moreover, synergistic interaction was found between F7 and F3 and the latter contains mainly cannabigerolic acid. The F7 and F7+F3 cytotoxic activity involved cell apoptosis and cell cycle arrest in S or G0/G1 phases, respectively. RNA profiling identified 2283 differentially expressed genes in F7+F3 treatment, among them genes related to the Wnt signaling pathway and apoptosis-related genes. Moreover, F7, F3, and F7+F3 treatments induced cell death of polyp cells.Conclusions: C. sativa compounds interact synergistically for cytotoxic activity against colon cancer cells and induce cell cycle arrest, apoptotic cell death, and distinct gene expression. F3, F7, and F7+F3 are also active on adenomatous polyps, suggesting possible future therapeutic value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.