Childhood trauma is associated with higher rates of both mood and anxiety disorders in adulthood. The exposure of rats to stressors during juvenility has comparable effects, and was suggested as a model of induced predisposition for these disorders. The neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM are critically involved in neural development, activity-dependent synaptic plasticity, and learning processes. We examined the effects of exposure to stressors during juvenility on coping with stressors in adulthood and on NCAM and PSA-NCAM expression within the rat limbic system both soon after the exposure and in adulthood. Exposure to stressors during juvenility reduced novel-setting exploration and impaired two-way shuttle avoidance learning in adulthood. Among naive rats, a development-related decrease of about 50% was evident in the PSA-NCAM to NCAM expression ratio in the basolateral amygdala, in the CA1 and dentate gyrus regions of the hippocampus, and in the entorhinal cortex. In juvenile-stressed rats, we found no such decrease, but rather an increase in the polysialylation of NCAM (B50%), evident soon after the exposure to juvenile stress and also in adulthood. Our results suggest that exposure to stressors during juvenility alters the maturation of the limbic system, and potentially underlies the predisposition to exhibit stress-related symptoms in adulthood.
L1 is critically involved in neural development and maturation, activity-dependent synaptic plasticity, and learning processes. Among adult rats, chronic stress protocols that affect L1 functioning also induce impaired cognitive and neural functioning and heightened anxiety reminiscent of stress-induced mood and anxiety disorders. Epidemiological studies indicate that childhood trauma is related predominantly to higher rates of both mood and anxiety disorders in adulthood and is associated with altered limbic system functioning. Exposing rats to stress during the juvenile period ("juvenile stress") has comparable effects and was suggested as a model of induced predisposition for these disorders. This study examined the effects of juvenile stress on rats aversive learning and on L1 expression soon after exposure and in adulthood, both following additional exposure to acute stress and in its absence. Adult juvenile-stressed rats exhibited enhanced cued fear conditioning, reduced novel-setting exploration, and impaired avoidance learning. Furthermore, juvenile stress increased L1 expression in the BLA, CA1, DG, and EC both soon after the stressful experience and during adulthood. It appears that juvenile stress affects the normative maturational decrease in L1 expression. The results support previous indications that juvenile stress alters the maturation of the limbic system and further support a role for L1 regulation in the mechanisms that underlie the predisposition to exhibit mood and/or anxiety disorders in adulthood. Furthermore, the findings support the "network hypothesis," which postulates that information-processing problems within relevant neural networks might underlie stress-induced mood and anxiety disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.