Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in reallife situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.
We describe the formalism, as well as numerical and implementation issues behind PARSEC -the pseudopotential algorithm for real-space electronic structure calculations. Its current capabilities are illustrated via application of PARSEC to numerous problems in nanoscience.
We study the model of projective simulation (PS), a novel approach to artificial intelligence based on stochastic processing of episodic memory which was recently introduced [1]. Here we provide a detailed analysis of the model and examine its performance, including its achievable efficiency, its learning times and the way both properties scale with the problems' dimension. In addition, we situate the PS agent in different learning scenarios, and study its learning abilities. A variety of new scenarios are being considered, thereby demonstrating the model's flexibility. Further more, to put the PS scheme in context, we compare its performance with those of Q-learning and learning classifier systems, two popular models in the field of reinforcement learning. It is shown that PS is a competitive artificial intelligence model of unique properties and strengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.