The use of aluminum sulfate (Al 2 SO 4) coagulant in water treatment plants generates large amount of sludge residues containing the alum hydroxide precipitates and organic matter. Due to its amphoteric characteristic, this sludge by-product offers alum coagulant recovery by using electrochemical process, before safe disposal to the environment. This study is aimed at evaluating the efficiency of membrane-based electrochemical processes to recover aluminum from the filtrate of the acidified sludge. The dried alum sludge was acidified using sulfuric acid at pH 3, and then centrifuged to obtain the filtrate. Organic content of the filtrate was measured by means of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD), i.e., 295.8 mg/L and 9,666.7±942.81 mg/L, respectively. In addition, the concentration of Al, Fe, Cu, and Cr was 1,194 mg/L, 515 mg/L, 0.559 mg/L, and 0.217 mg/L, respectively. The two-compartment electrochemical reactor was separated by using Cation Exchange Membrane (CEM) and Anion Exchange Membrane (AEM), and operated in a batch system for 10 hours with an electrical current of 300 mA. The results showed that the use of CEM in electrolysis with the electrodes distances of 1 cm increased the aluminum recovery up to 66.74% with the TOC removal of 24.04% compared to the use of AEM. An electrochemical process using CEM can be suggested to obtain organic-free recovery stream containing higher recovery of alum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.