Background: When moved orthodontically, hypofunctional teeth will have a decreased tooth movement rate compared to normal teeth. Hypofunctional teeth would have less VEGF expression and decreased heparan sulfate proteoglycan production during orthodontic tooth movement. This study aimed to determine the number of osteoblasts in the tension side and the number of osteoclasts in the pressure side of the hypofunctional teeth during orthodontic tooth movement. Method: 18 male Wistar rats were given a palatal coil spring application on the maxillary incisors. Rats were divided into two groups, the orthodontic group with normal occlusion (NO) and hypofunctional occlusion (HO). The number of osteoblasts on the tension side and osteoclasts on the pressure side on days zero (D0), five (D5), and 10 (D10) were tested with two-way ANOVA. Observations were made by hematoxylin eosin staining. Result: The results showed that the number of osteoblasts on the tension side of the HO group was the same at the NO group (p> 0.05). The number of osteoblasts on the tension side in the NO and HO groups at D5 was the same at D10 (p = 0.99), but significantly higher (p = 0.002), than D0. The number of osteoclasts on the pressure side in the HO group was significantly lower than the NO group (p <0.05). The number of osteoclasts in the NO D5 group was significantly higher than the other groups (p <0.05). Conclusions: The number of osteoblasts on the tension side was not affected by the hypofunctional state but decreased the number of osteoclasts on the pressure side during orthodontic tooth movement.
Background: When moved orthodontically, hypofunctional teeth will have a decreased tooth movement rate compared to normal teeth. This study aimed to determine the number of osteoblasts in the tension side and the number of osteoclasts in the pressure side of the hypofunctional teeth during orthodontic tooth movement. Method: 18 male Wistar rats were given a palatal coil spring application on the maxillary incisors. Rats were divided into two groups, the orthodontic group with normal occlusion (NO) and hypofunctional occlusion (HO). The number of osteoblasts on the tension side and osteoclasts on the pressure side on days zero (D0), five (D5), and 10 (D10) were tested with two-way ANOVA. Observations were made by hematoxylin eosin staining. Result: The results showed that the number of osteoblasts on the tension side of the HO group was the same at the NO group (p> 0.05). The number of osteoblasts on the tension side in the NO and HO groups at D5 was the same at D10 (p = 0.99), but significantly higher (p = 0.002), than D0. The number of osteoclasts on the pressure side in the HO group was significantly lower than the NO group (p <0.05). The number of osteoclasts in the NO D5 group was significantly higher than the other groups (p <0.05). Conclusions: The number of osteoblasts on the tension side was not affected by the hypofunctional state but decreased the number of osteoclasts on the pressure side during orthodontic tooth movement.
Background: When moved orthodontically, hypofunctional teeth will have a decreased tooth movement rate compared to normal teeth. This study aimed to determine the number of osteoblasts in the tension side and the number of osteoclasts in the pressure side of the hypofunctional teeth during orthodontic tooth movement. Method: 18 male Wistar rats were given a palatal coil spring application on the maxillary incisors. Rats were divided into two groups, the orthodontic group with normal occlusion (NO) and hypofunctional occlusion (HO). The number of osteoblasts on the tension side and osteoclasts on the pressure side on days zero (D0), five (D5), and 10 (D10) were tested with two-way ANOVA. Observations were made by hematoxylin eosin staining. Result: The results showed that the number of osteoblasts on the tension side of the HO group was the same at the NO group (p> 0.05). The number of osteoblasts on the tension side in the NO and HO groups at D5 was the same at D10 (p = 0.99), but significantly higher (p = 0.002), than D0. The number of osteoclasts on the pressure side in the HO group was significantly lower than the NO group (p <0.05). The number of osteoclasts in the NO D5 group was significantly higher than the other groups (p <0.05). Conclusions: The number of osteoblasts on the tension side was not affected by the hypofunctional state but decreased the number of osteoclasts on the pressure side during orthodontic tooth movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.