Background: This study aimed to verify the effect of soluble guanylate cyclase (sGC) stimulator vericiguat on myocardial ischemia-reperfusion injury and explore its mechanism.Methods: A myocardial ischemia-reperfusion injury model of mice was established and intravenous administration was performed 2 minutes before reperfusion. Triphenyltetrazolium chloride (TTC) staining and echocardiography were used to verify the effect of vericiguat on myocardial ischemia-reperfusion injury in the infarct area, and immunofluorescence was used to observe myocardial pathological changes at different time points after reperfusion. Quantitative proteomics was conducted to analysis the main differentially expressed proteins after drug intervention. The distribution of endothelial cells and sGC after myocardial ischemia-reperfusion injury in mice was observed by immunofluorescence. RNA sequencing of endothelial cells was used to search for differentially expressed molecules. Thioflavin-S staining was used to observe the effect of vericiguat on improving the nonrecurrence phenomenon and reducing the infarct size after reperfusion.Results: The effect of the sGC stimulator vericiguat on myocardial ischemia-reperfusion injury was verified, and myocardial microcirculation significantly increased after drug intervention. Quantitative proteomics found that the protein expression of myocardial tissue in the ischemia-reperfusion area was not significantly different in the drug intervention group, except for increased adenosine triphosphate (ATP) activity. Vericiguat, nitroglycerin, and nitrite did not directly affect apoptosis or cell viability. RNA sequencing of human umbilical vein endothelial cells screened the upregulated antioxidant response.Conclusions: SGC stimulator vericiguat ameliorated myocardial ischemia-reperfusion injury through indirect pathways of improving microcirculation.
Background The ketogenic diet (KD) has anti-tumor and anti-diabetic effects in addition to its anti-epileptic role. It could also improve cardiac function and attenuate neurological insult. However, the effect of KD on blood perfusion or tissue recovery after ischemia remains largely unknown. Thus, we observed blood flow and ischemic tissue recovery following hind limb ischemia (HLI) in mice. Methods C57 mice were fed with either a KD or normal diet (ND) for 2 weeks, before inducing hind limb ischemia, blood perfusion of ischemic limb tissue was observed at 0, 7, and 21 days post operation. Results KD not only decreased blood perfusion of ischemic limb tissue but also delayed muscle recovery after ischemia, induced muscle atrophy of non-ischemic tissue compared to mice fed with ND. Furthermore, KD delayed wound healing at the surgical site and aggravated inflammation of the ischemic tissue. At the cellular level, KD altered the metabolic status of limb tissue by decreasing glucose and ketone body utilization while increasing fatty acid oxidation. Following ischemia, glycolysis, ketolysis, and fatty acid utilization in limb tissue were all further reduced by KD, while ketogenesis was mildly increased post KD in this mice model. Conclusion The KD may cause impaired tissue recovery after ischemia and possible muscle atrophy under a prolonged diet. Our results hint that patients with limb ischemia should avoid ketogenic diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.