We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N − 1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥ 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N − 1 outgoing edges are spectrally stable, whereas the shifted states with nonmonotone profiles in the N − 1 outgoing edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states are unstable under the NLS flow due to the perturbations breaking the reduction to the NLS equation on an infinite line.
We consider a half-soliton stationary state of the nonlinear Schrödinger equation with the power nonlinearity on a star graph consisting of N edges and a single vertex. For the subcritical power nonlinearity, the half-soliton state is a degenerate critical point of the action functional under the mass constraint such that the second variation is nonnegative. By using normal forms, we prove that the degenerate critical point is a nonlinear saddle point, for which the small perturbations to the half-soliton state grow slowly in time resulting in the nonlinear instability of the half-soliton state. The result holds for any N ≥ 3 and arbitrary subcritical power nonlinearity. It gives a precise dynamical characterization of the previous result of Adami et al., where the half-soliton state was shown to be a saddle point of the action functional under the mass constraint for N = 3 and for cubic nonlinearity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.