We deal with a single conservation law in one space dimension whose flux function is discontinuous in the space variable and we introduce a proper framework of entropy solutions. We consider a large class of fluxes, namely, fluxes of the convex-convex type and of the concave-convex (mixed) type. The alternative entropy framework that is proposed here is based on a two step approach. In the first step, infinitely many classes of entropy solutions are defined, each associated with an interface connection. We show that each of these class of entropy solutions form a contractive semigroup in L1 and is hence unique. Godunov type schemes based on solutions of the Riemann problem are designed and shown to converge to each class of these entropy solutions. The second step is to choose one of these classes of solutions. This choice depends on the Physics of the problem being considered and we concentrate on the model of two-phase flows in a heterogeneous porous medium. We define an optimization problem on the set of admissible interface connections and show the existence of an unique optimal connection and its corresponding optimal entropy solution. The optimal entropy solution is consistent with the expected solutions for two-phase flows in heterogeneous porous media.
Sequences of positive solutions to semilinear elliptic equations of critical exponential growth in the plane either are precompact in the Sobolev H 1 -topology or concentrate at isolated points of the domain. For energies allowing at most single-point blow-up, we establish a universal blow-up pattern near the concentration point and uniquely characterize the blow-up energy in terms of a geometric limiting problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.