We establish new Hölder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hölder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.
In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the ergodic problem (or cell problem), i.e. we construct solutions of the form λt + v(x). We then prove that solutions of the Cauchy problem look like those specific solutions as time goes to infinity. We face two key difficulties to carry out this classical program: (i) the fact that we handle the case of "mixed operators" for which the required ellipticity comes from a combination of the properties of the local and nonlocal terms and (ii) the treatment of the superlinear case (in the gradient variable). Lipschitz estimates previously proved by the authors (2012) and Strong Maximum principles proved by the third author (2012) play a crucial role in the analysis.
This paper presents an image processing algorithm simulating a sub-pixel evolution of an image by mean curvature motion or by affine curvature motion. The sub-pixel algorithm computes the image curvature directly on the smoothed level lines, and yields a microscopic visualization of the curvature map revealing many image details, and getting rid of aliasing effects. This "curvature microscope" showing curvatures in false colors runs on line on any image proposed by users at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.