The inverse normal method, which is used to combine "P"-values from a series of statistical tests, requires independence of single test statistics in order to obtain asymptotic normality of the joint test statistic. The paper discusses the modification by Hartung (1999, "Biometrical Journal", Vol. 41, pp. 849-855) , which is designed to allow for a certain correlation matrix of the transformed "P"-values. First, the modified inverse normal method is shown here to be valid with more general correlation matrices. Secondly, a necessary and sufficient condition for (asymptotic) normality is provided, using the copula approach. Thirdly, applications to panels of cross-correlated time series, stationary as well as integrated, are considered. The behaviour of the modified inverse normal method is quantified by means of Monte Carlo experiments. Copyright 2006 Blackwell Publishing Ltd.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract While the limiting null distributions of cointegration tests are invariant to a certain amount of conditional heteroskedasticity as long as global homoskedasticity conditions are fulfilled, they are certainly affected when the innovations exhibit timevarying volatility. Worse yet, distortions from single units accumulate in panels, where one must anyway pay special attention to dependence among cross-sectional units, be it time-dependent or not. To obtain a panel cointegration test robust to both global heteroskedasticity and cross-unit dependence, we start by adapting the nonlinear instruments method proposed for the Dickey-Fuller test by Chang (2002, J Econometrics 110, 261-292) to an error-correction testing framework. We show that IV-based testing of the null of no error-correction in individual equations results in asymptotic standard normality of the test statistic as long as the t-type statistics are computed with White heteroskedasticity-consistent standard errors. Remarkably, the result holds even in the presence of endogenous regressors, irrespective of the number of integrated covariates, and for any variance profile. Furthermore, a test for the null of no cointegration-in effect, a joint test against no error correction in any equation of each unit-retains the nice properties of the univariate tests. In panels with fixed cross-sectional dimension, both types of test statistics from individual units are shown to be asymptotically independent even in the presence of correlation or cointegration across units, leading to a panel test statistic robust to cross-unit dependence and unconditional heteroskedasticity. The tests perform well in panels of usual dimensions with innovations exhibiting variance breaks and a factor structure.
Terms of use:
Documents in
A new stationarity test for heterogeneous panel data with large cross-sectional dimension is developed and used to examine a panel with growth rates of unit labor cost in the USA. The test allows for strong cross-unit dependence in the form of unbounded long-run correlation matrices, for which a simple parameterization is proposed. A KPSS-type distribution results asymptotically if letting T→∞ be followed by N→∞. Some evidence against stationarity (short memory) is found for the examined series.panel KPSS-type test, cross-correlation, inflation dynamics,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.