Developments of economic systems are critical for bio-regenerative life support systems in manned space missions. In this work we report on the feasibility of using two direct sunlight powered processes sequentially for the recovery of water and nutrients from urine. The work presents experimental evidence on nutrient and water recovery achieved using the proto-type designed and developed. We report the design and testing of a solar still which would serve on the nutrient recovery front. The cooled condensate from the solar still is fed into a solar powered electrolysis unit where nano-structured indium sulphide (In2S3) thin films coated over fluorine doped tin oxide (SnO2:F) substrate serve as one of the working electrodes. The electrolysis takes place in the absence of an electrolyte which manifests as a technical achievement of our work. Our results show that the COD level in the recycled water is very low. The In2S3 photo-electrodes are stable without any physical damage after the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.