A novel high throughput method for synthesis and screening of customized protein-resistant surfaces was developed. This method is an inexpensive, fast, reproducible and scalable approach to synthesize and screen protein-resistant surfaces appropriate for a specific feed. The method is illustrated here by combining a high throughput platform (HTP) approach together with our patented photo-induced graft polymerization (PGP) method developed for facile modification of commercial poly(aryl sulfone) membranes. We demonstrate that the HTP–PGP approach to synthesize and screen fouling-resistant surfaces is general, and thus provides the capability to develop surfaces optimized for specific feeds. Surfaces were prepared via graft polymerization onto poly(ether sulfone) (PES) membranes and were evaluated using a protein adsorption assay followed by pressure-driven filtration. We have employed the HTP–PGP approach to confirm previously reported successful monomers and to develop new antifouling surfaces from a library of 66 monomers for four different challenges of interest to the biotechnology community: hen egg-white lysozyme, supernatant from Chinese Hamster Ovary (CHO) cells in phosphate buffered saline (PBS) solution as a model cell suspension, and immunoglobulin G (IgG) precipitated in the absence and presence of bovine serum albumin (BSA) in high salt solution as a model precipitation process.
Virus filtration is used to ensure drug safety in the production of biotherapeutics. Several recent studies have shown a dramatic decrease in virus retention as a result of a process disruption, e.g., a transient pressure release. In this work, a novel two-label fluorescence technique was developed to probe virus capture within virus filtration membranes using confocal microscopy. Experiments were performed with Ultipor® DV20, Viresolve® Pro, and Viresolve® NFP membranes using bacteriophage φx174 as a model virus. The filters were challenged with two batches of fluorescently labeled phage: one labeled with red dye (Cy5) and one with green dye (SYBR Gold) to visualize captured phage from before and after the pressure release. The capture patterns seen in the confocal images were a strong function of the underlying membrane morphology and pore structure. The DV20 and Viresolve® NFP showed migration of previously captured phage further into the filter, consistent with the observed loss of virus retention after the pressure release. In contrast, there was no migration of captured virus in the Viresolve® Pro membranes, and these filters were also the only ones to show stable virus retention after a pressure release. The direct visualization of virus capture using the two-label fluorescence technique provides unique insights into the factors controlling the retention characteristics of virus filters with different pore structure.
Viral filtration is routinely incorporated into the downstream purification processes for the production of biologics produced in mammalian cell cultures (MCC) to remove potential viral contaminants. In recent years, the use of retentive filters designed for retaining parvovirus (~20 nm) has become an industry standard in a conscious effort to further improve product safety. Since retentive filters remove viruses primarily by the size exclusion mechanism, it is expected that filters designed for parvovirus removal can effectively clear larger viruses such as retroviruses (~100 nm). In an attempt to reduce the number of viral clearance studies, we have taken a novel approach to demonstrate the feasibility of claiming modular retrovirus clearance for Asahi Planova 20N filters. Porcine parvovirus (PPV) and xenotropic murine leukemia virus (XMuLV) were co-spiked into six different feedstreams and then subjected to laboratory scale Planova 20N filtration. Our results indicate that Planova 20N filters consistently retain retroviruses and no retrovirus has ever been detected in the filtrates even when significant PPV breakthrough is observed. Based on the data from multiple in-house viral validation studies and the results from the co-spiking experiments, we have successfully claimed a modular retrovirus clearance of greater than 6 log10 reduction factors (LRF) to support clinical trial applications in both USA and Europe.
Virus filtration can provide a robust method for removal of adventitious parvoviruses in the production of biotherapeutics. Although virus filtration is typically thought to function by a purely size-based removal mechanism, there is limited data in the literature indicating that virus retention is a function of solution conditions. The objective of this work was to examine the effect of solution pH and ionic strength on virus retention by the Viresolve(®) NFP membrane. Data were obtained using the bacteriophage ϕX174 as a model virus, with retention data complemented by the use of confocal microscopy to directly visualize capture of fluorescently labeled ϕX174 within the filter. Virus retention was greatest at low pH and low ionic strength, conditions under which there was an attractive electrostatic interaction between the negatively charged membrane and the positively charged phage. In addition, the transient increase in virus transmission seen in response to a pressure disruption at pH 7.8 and 10 was completely absent at pH 4.9, suggesting that the trapped virus are unable to overcome the electrostatic attraction and diffuse out of the pores when the pressure is released. Further confirmation of this physical picture was provided by confocal microscopy. Images obtained at pH 10 showed the migration of previously captured phage; this phenomenon was absent at pH 4.9. These results provide important new insights into the factors governing virus retention using virus filtration membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.