The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models.
Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with millions of microstates to extract such long-range structural correlations,
i.e.
thermodynamic coupling free energies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional motions and catalysis. Physical origins of ‘sectors’, determinants of native ensemble heterogeneity in extant, ancient and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical framework highlights how evolutionary selection and optimization occur at the level of global interaction network for a given protein fold impacting folding, function, and allosteric outputs.
The functioning of
proteins is intimately tied to their fluctuations
in the native ensemble. The structural–energetic features that
determine fluctuation amplitudes and hence the shape of the underlying
landscape, which in turn determine the magnitude of the functional
output, are often confounded by multiple variables. Here, we employ
the FF1 domain from human p190A RhoGAP protein as a model system to
uncover the molecular basis for phosphorylation of a buried tyrosine,
which is crucial to the transcriptional activity associated with transcription
factor TFII-I. Combining spectroscopy, calorimetry, statistical–mechanical
modeling, molecular simulations, and
in vitro
phosphorylation
assays, we show that the FF1 domain samples a diverse array of conformations
in its native ensemble, some of which are phosphorylation-competent.
Upon eliminating unfavorable charge–charge interactions through
a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation,
we observe proportionately lower phosphorylation extents due to the
altered structural coupling, damped equilibrium fluctuations, and
a more compact native ensemble. We thus establish a conformational
selection mechanism for phosphorylation in the FF1 domain with K53
acting as a “gatekeeper”, modulating the solvent exposure
of the buried tyrosine. Our work demonstrates the role of unfavorable
charge–charge interactions in governing functional events through
the modulation of native ensemble characteristics, a feature that
could be prevalent in ordered protein domains.
The rate at which a protein molecule folds is determined by opposing energetic and entropic contributions to the free energy that shape the folding landscape. Delineating the extent to which they impact the diffusional barrier-crossing events, including the magnitude of internal friction and barrier height, has largely been a challenging task. In this work, we extract the underlying thermodynamic and dynamic contributions to the folding rate of an unusually slow-folding helical DNA-binding domain, PurR, which shares the characteristics of ultrafast downhill-folding proteins but nonetheless appears to exhibit an apparent two-state equilibrium. We combine equilibrium spectroscopy, temperature-viscosity-dependent kinetics, statistical mechanical modeling, and coarse-grained simulations to show that the conformational behavior of PurR is highly heterogeneous characterized by a large spread in melting temperatures, marginal thermodynamic barriers, and populated partially structured states. PurR appears to be at the threshold of disorder arising from frustrated electrostatics and weak packing that in turn slows down folding due to a shallow, bumpy landscape and not due to large thermodynamic barriers or strong internal friction. Our work highlights how a strong temperature dependence on the pre-exponential could signal a shallow landscape and not necessarily a slow-folding diffusion coefficient, thus determining the folding timescales of even millisecond folding proteins and hints at possible structural origins for the shallow landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.