The need for the annotated training dataset on which data-hungry machine learning algorithms feed has increased dramatically with advanced acclaim of machine learning applications. To annotate the data, people with domain expertise are needed, but they are seldom available and expensive to hire. This has lead to the thriving of crowdsourcing platforms such as Amazon Mechanical Turk (AMT). However, the annotations provided by one worker cannot be used directly to train the model due to the lack of expertise. Existing literature in annotation aggregation focuses on binary and multi-choice problems. In contrast, little work has been done on complex tasks such as sequence labeling with imbalanced classes, a ubiquitous task in Natural Language Processing (NLP), and Bio-Informatics. We propose OPTSLA, an Optimization-based Sequential Label Aggregation method, that jointly considers the characteristics of sequential labeling tasks, workers reliabilities, and advanced deep learning techniques to conquer the challenge. We evaluate our model on crowdsourced data for named entity recognition task. Our results show that the proposed OPTSLA outperforms the state-of-the-art aggregation methods, and the results are easier to interpret.
Diverse Natural Language Processing tasks employ constituency parsing to understand the syntactic structure of a sentence according to a phrase structure grammar. Many state-of-the-art constituency parsers are proposed, but they may provide different results for the same sentences, especially for corpora outside their training domains. This paper adopts the truth discovery idea to aggregate constituency parse trees from different parsers by estimating their reliability in the absence of ground truth. Our goal is to consistently obtain high-quality aggregated constituency parse trees. We formulate the constituency parse tree aggregation problem in two steps, structure aggregation and constituent label aggregation. Specifically, we propose the first truth discovery solution for tree structures by minimizing the weighted sum of Robinson-Foulds (RF ) distances, a classic symmetric distance metric between two trees. Extensive experiments are conducted on benchmark datasets in different languages and domains. The experimental results show that our method, CPTAM, outperforms the state-of-the-art aggregation baselines. We also demonstrate that the weights estimated by CPTAM can adequately evaluate constituency parsers in the absence of ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.