We report the results of a multi-band observing campaign on the famous blazar 3C 279 conducted during a phase of increased activity from 2013 December to 2014 April, including first observations of it with NuSTAR. The γ-ray emission of the source measured by Fermi-LAT showed multiple distinct flares reaching the highest flux level measured in this object since the beginning of the Fermi mission, with F(E > 100 MeV) of 10 −5 photons cm −2 s −1 , and with a flux doubling time scale as short as 2 hours. The γ-ray spectrum during one of the flares was very hard, with an index of Γ γ = 1.7 ± 0.1, which is rarely seen in flat spectrum radio quasars. The lack of concurrent optical variability implies a very high Compton dominance parameter L γ /L syn > 300. Two 1-day NuSTAR observations with accompanying Swift pointings were separated by 2 weeks, probing different levels of source activity. While the 0.5−70 keV X-ray spectrum obtained during the first pointing, and fitted jointly with Swift-XRT is well-described by a simple power law, the second joint observation showed an unusual spectral structure: the spectrum softens by ∆Γ X ≃ 0.4 at ∼ 4 keV. Modeling the broad-band SED during this flare with the standard synchrotron plus inverse Compton model requires: (1) the location of the γ-ray emitting region is comparable with the broad line region radius, (2) a very hard electron energy distribution index p ≃ 1, (3) total jet power significantly exceeding the accretion disk luminosity L j /L d 10, and (4) extremely low jet magnetization with L B /L j 10 −4 . We also find that single-zone models that match the observed γ-ray and optical spectra cannot satisfactorily explain the production of X-ray emission.
We monitored BL Lacertae for 13 nights in optical B, V, R, and I bands during October and November 2014 including quasi-simultaneous observations in V and R bands using two optical telescopes in India. We have studied multi-band optical flux variations, colour variation and spectral changes in this blazar. Source was found to be active during the whole monitoring period and showed significant intraday variability on 3 nights in V and R filters while displayed hints of variability on 6 other dates in R passband and on 2 nights in V filter. From the colour-magnitude analysis of the source we found that the spectra of the target gets flatter as it becomes brighter on intra-night timescale. Using discrete correlation technique, we found that intraday light curves in both V and R filters are almost consistent and well correlated with each other. We also generated spectral energy distribution (SED) of the target using the B, V, R, and I data sets for all 13 nights which could help us investigate the physical process responsible for the observed variations in BL Lacertae objects. We also discuss possible physical causes of the observed spectral variability.
We present recent optical photometric observations of the blazar OJ 287 taken during September 2015 -May 2016. Our intense observations of the blazar started in November 2015 and continued until May 2016 and included detection of the large optical outburst in December 2016 that was predicted using the binary black hole model for OJ 287. For our observing campaign, we used a total of 9 ground based optical telescopes of which one is in Japan, one is in India, three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the USA. These observations were carried out in 102 nights with a total of ∼ 1000 image frames in BVRI bands, though the majority were in the R band. We detected a second comparably strong flare in March 2016. In addition, we investigated multi-band flux variations, colour variations, and spectral changes in the blazar on diverse timescales as they are useful in understanding the emission mechanisms. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux, colour and spectral variability.
We analyzed the multi-band optical behaviour of the BL Lacertae object, S5 0716+714, during its outburst state from 2014 November -2015 March. We took data on 23 nights at three observatories, one in India and two in Bulgaria, making quasi-simultaneous observations in B, V, R, and I bands. We measured multi-band optical fluxes, colour and spectral variations for this blazar on intraday and short timescales. The source was in a flaring state during the period analyzed and displayed intense variability in all wavelengths. R band magnitude of 11.6 was attained by the target on 18 Jan 2015, which is the brightest value ever recorded for S5 0716+714. The discrete correlation function method yielded good correlation between the bands with no measurable time lags, implying that radiation in these bands originate from the same region and by the same mechanism. We also used the structure function technique to look for characteristic timescales in the light curves. During the times of rapid variability, no evidence for the source to display spectral changes with magnitude was found on either of the timescales. The amplitude of variations tends to increase with increasing frequency with a maximum of ∼ 22% seen during flaring states in B band. A mild trend of larger variability amplitude as the source brightens was also found. We found the duty cycle of our source during the analyzed period to be ∼ 90%. We also investigated the optical spectral energy distribution of S5 0716+714 using B, V, R, and I data points for 21 nights. We briefly discuss physical mechanisms most likely responsible for its flux and spectral variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.