The L-type calcium current (ICaL) plays a critical role in cardiac electrophysiology, and models of ICaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modelling ICaL have resulted in several competing theories (encoded in mathematical equations). However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear where predictions overlap or conflict, or which model is best suited for any particular application. We gathered 71 mammalian ICaL models, compared their structure, and reproduced simulated experiments to show that there is a large variability in their predictions, which was not substantially diminished when grouping by species or other categories. By highlighting the differences in these competing theories, listing major data sources, and providing simulation code, we have laid strong foundations for the development of a consensus model of ICaL.
The L-type calcium current (I CaL ) plays a critical role in cardiac electrophysiology, and models of I CaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modelling I CaL have resulted in several competing theories (encoded in mathematical equations).However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear which model is best suited for any particular application. In this review, we describe and compare 73 published mammalian I CaL models, and use simulated experiments to show that there is a large variability in their predictions, which is not substantially diminished when grouping by species or other categories. We provide model code for 60 models, list major data sources, and discuss experimental and modelling work that will be required to reduce this huge list of competing theories and ultimately develop a community consensus model of I CaL .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.