Large scale research studies combining magnetic resonance imaging data generated at multiple sites on multiple vendor platforms are becoming more commonplace. The Ontario Neurodegenerative Disease Research Initiative (ONDRI -http://ondri.ca/), a project funded by the Ontario Brain Institute (OBI), is a recently established province-wide natural history study, which has recruited more than 500 participants from neurodegenerative disease groups including amyotrophic lateral sclerosis, fronto-temporal dementia, Parkinson's disease, Alzheimer's disease, mild cognitive impairment, and cerebrovascular disease (previously referred to as the vascular cognitive impairment cohort). Because of its multi-site nature, all captured data must be standardized and meet minimum quality standards to reduce variability. The goal of the ONDRI imaging platform is to maximize data quality by implementing vendor-specific harmonized MR imaging protocols (consistent with the Canadian Dementia Imaging Protocol -http://www.cdip-pcid.ca/), monitoring protocol adherence, qualitatively assessing image quality, measuring signal-to-noise and contrast-to-noise, monitoring system stability, and applying corrections based on the analysis of images from two different phantoms regularly acquired at each site. To maximize image quality, this work describes the use of various automatic pipelines and manual assessment steps, integrated within an established informatics and databasing platform, the Stroke Patient Recovery Research Database (SPReD) built on the Extensible Neuroimaging Archive Toolkit (XNAT), and contained within the Brain-CODE (Centre for Ontario Data Exploration) framework. The purpose of the current paper is to describe the steps undertaken by ONDRI to achieve this high standard of data integrity. Data have been successfully collected for the past 4 years with the pipelines and assessments identifying deviations, allowing for timely interventions and assessment of image quality.
First, existing sleep stage classifier sensors and algorithms are reviewed and compared in terms of classification accuracy, level of automation, implementation complexity, invasiveness, and targeted application. Next, the implementation of a miniature microsystem for low-latency automatic sleep stage classification in rodents is presented. The classification algorithm uses one EMG (electromyogram) and two EEG (electroencephalogram) signals as inputs in order to detect REM (rapid eye movement) sleep, and is optimized for low complexity and low power consumption. It is implemented in an on-board low-power FPGA connected to a multi-channel neural recording IC, to achieve low-latency (order of 1 ms or less) classification. Off-line experimental results using pre-recorded signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.86%, respectively, with the maximum latency of 39 [Formula: see text]. The device is designed to be used in a non-disruptive closed-loop REM sleep suppression microsystem, for future studies of the effects of REM sleep deprivation on memory consolidation.
A wearable microsystem for low-latency automatic sleep stage classification and REM sleep detection in rodents is presented. The detection algorithm is implemented digitally to achieve low latency and is optimized for low complexity and power consumption. The algorithm uses both EEG and EMG signals as inputs. Experimental results using off-line signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.83%, respectively, with a latency of 39µs. The system will be used in a non-disruptive closed loop REM sleep suppression microsystem to study the effects of REM sleep deprivation on memory consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.