Nanotechnology has seen exponential growth in last decade due to its unique physicochemical properties; however, the risk associated with this emerging technology has withdrawn ample attention in the past decade. Nanotoxicity is majorly contributed to the small size and large surface area of nanomaterials, which allow easy dispersion and invasion of anatomical barriers in human body. Unique physio-chemical properties of nanoparticles make the investigation of their toxic consequences intricate and challenging. This makes it important to have an in-depth knowledge of different mechanisms involved in nanomaterials's action and toxicity. Nano-toxicity has various effects on human health and diseases as they can easily enter into the humans via different routes, mainly respiratory, dermal, and gastrointestinal routes. This also limits the use of nanomaterials as therapeutic and diagnostic tools. This review focuses on the nanomaterial-cell interactions leading to toxicological responses. Different mechanisms involved in nanoparticle-mediated toxicity with the main focus on oxidative stress, genotoxic, and carcinogenic potential has also been discussed. Different methods and techniques used for the characterization of nanomaterials in food and other biological matrices have also been discussed in detail. Nano-toxicity on different organs-with the major focus on the cardiac and respiratory system-have been discussed. Conclusively, the risk management of nanotoxicity is also summarized. This review provides a better understanding of the current scenario of the nanotoxicology, disease progression due to nanomaterials, and their use in the food industry and medical therapeutics. Briefly, the required rules, regulations, and the need of policy makers has been discussed critically.
Heart failure is an aging-associated disease, which is the leading cause of death worldwide. Sirtuin family members have been largely studied in the context of aging and agingassociated diseases. Sirtuin 2 (SIRT2) is a cytoplasmic protein in the family of sirtuins that are NAD + -dependent class III histone deacetylases. In this work, we studied the role of SIRT2 in regulating NFAT transcription factor and the development of cardiac hypertrophy. Confocal microscopy analysis indicated that SIRT2 is localized in the cytoplasm of cardiomyocytes and SIRT2 levels are reduced during pathological hypertrophy of the heart. SIRT2 deficient mice develops spontaneous pathological cardiac hypertrophy, remodelling, fibrosis and dysfunction in an age-dependent manner. Moreover, young SIRT2 deficient mice develops exacerbated agonist-induced hypertrophy. On contrast, SIRT2 overexpression attenuated agonist-induced cardiac hypertrophy in cardiomyocytes in a cell autonomous manner. Mechanistically, SIRT2 binds to and deacetylates NFATc2 transcription factor. SIRT2 deficiency stabilizes NFATc2 and enhances nuclear localization of NFATc2, resulting in increased transcription activity. Our results suggest that inhibition of NFAT rescues the cardiac dysfunction in SIRT2 deficient mice. Thus, our study establishes SIRT2 as a novel endogenous negative regulator of NFAT transcription factor. _____________________________________
In this study, cold plasma was used to prepare plasma‐activated water (PAW) from a dielectric barrier discharge plasma source, with ambient air as the plasma‐forming gas. The PAW prepared was characterized for its physicochemical parameters, some of which followed a strong linear correlation with activation time (ta). The effects of PAW addition on the cell viability of human breast cancer cells (MDA‐MB‐231) and healthy murine muscle‐derived fibroblast cells were investigated using the MTT assay. The volume of PAW added and ta of PAW showed a significant impact. The PAW prepared was selective toward killing cancer cells at specific ta. PAW retains its potency against cancer cells after 14 days of refrigerated storage.
Doxorubicin (Dox) is an effective anti-cancer drug with severe reported cardiotoxicity. Cardiovascular risks associated with present cancer therapeutics demand urgent attention. There has been a growing interest in naturally occurring compounds to improve the therapeutic index as well as prevent non-tumour tissues from sustaining chemotherapy-induced damages. In the present study, the effects of curcumin, a polyphenol isolated from Curcuma longa and well known for its anti-oxidative, anti-cancerous and anti-inflammatory properties, was studied in relation to the Dox-induced cardiotoxicity. As literature suggests conflicting role of curcumin in Dox-induced cardiotoxicity, concentration- and time-dependent studies were conducted to study the different curcumin effects. H9C2 cardiomyoblasts were used in the study and cell viability assays were done to study Dox-induced cellular death. Drug uptake assay for Dox was performed followed by cellular growth inhibition analysis by FACS Calibur. Morphological alterations, intracellular ROS levels and mitochondrial integrity were observed by fluorescent-based microscopic studies. Catalases and superoxide dismutase-inbuilt anti-oxidant enzyme activities were studied, and it was observed that Dox-dependent cardiotoxicity occurs through ROS overproduction by exaggerating the inbuilt anti-oxidant mechanism. Expression analysis for cell death and ROS markers-BCl, Bax, SOD, catalase-was investigated by semi-quantitative RT-PCR, and the Dox-induced stress on cardiac cells was confirmed. Initiator and effector caspases activity analysis also confirmed these findings. Our study proposes that curcumin exerts time-dependent responses on Dox-induced cardiotoxicity, where parallel treatment potentiates and pre-treatment suppresses the Dox-induced toxicity in H9C2 cardiomyoblasts. In conclusion, pre-treatment of curcumin suppresses the Dox-induced cardiotoxicity and holds a great potential as future cardio-oncological therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.