Activity-dependent specification of neuronal architecture during early postnatal life is essential for refining the precision of communication between neurons. In the spinal cord under normal circumstances, the AMPA receptor subunit GluR1 is expressed at high levels by motor neurons and surrounding interneurons during this critical developmental period, although the role it plays in circuit formation and locomotor behavior is unknown. Here, we show that GluR1 promotes dendrite growth in a non-cell-autonomous manner in vitro and in vivo. The mal-development of motor neuron dendrites is associated with changes in the pattern of interneuronal connectivity within the segmental spinal cord and defects in strength and endurance. Transgenic expression of GluR1 in adult motor neurons leads to dendrite remodeling and supernormal locomotor function. GluR1 expression by neurons within the segmental spinal cord plays an essential role in formation of the neural network that underlies normal motor behavior.
There is no consensus about whether making muscles abnormally large by reducing myostatin activity affects force-generating capacity or the ability to perform activities requiring muscular endurance. We therefore examined grip force, contractile properties of extensor digitorum longus (EDL) muscles, and voluntary wheel running in mice in which myostatin was depleted after normal muscle development. Cre recombinase activity was induced to knock out exon 3 of the myostatin gene in 4-mo-old mice in which this exon was flanked by loxP sequences (Mstn[f/f]). Control mice with normal myostatin genes (Mstn[w/w]) received the same Cre-activating treatment. Myostatin depletion increased the mass of all muscles that were examined (gastrocnemius, quadriceps, tibialis anterior, EDL, soleus, triceps) by approximately 20-40%. Grip force, measured multiple times 2-22 wk after myostatin knockout, was not consistently greater in the myostatin-deficient mice. EDL contractile properties were determined 7-13 mo after myostatin knockout. Twitch force tended to be greater in myostatin-deficient muscles (+24%; P=0.09), whereas tetanic force was not consistently elevated (mean +11%; P=0.36), even though EDL mass was greater than normal in all myostatin-deficient mice (mean +36%; P<0.001). The force deficit induced by eccentric contractions was approximately twofold greater in myostatin-deficient than in normal EDL muscles (31% vs. 16% after five eccentric contractions; P=0.02). Myostatin-deficient mice ran 19% less distance (P<0.01) than control mice during the 12 wk following myostatin depletion, primarily because of fewer running bouts per night rather than diminished running speed or bout duration. Reduced specific tension (ratio of force to mass) and reduced running have been observed after muscle hypertrophy was induced by other means, suggesting that they are characteristics generally associated with abnormally large muscles rather than unique effects of myostatin deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.