A method is presented to detect and quantify structural damages from changes in modal parameters (such as natural frequencies and mode shapes). An inverse problem is formulated to minimize the objective function, defined in terms of discrepancy between the vibration data identified by modal testing and those computed from analytical model, which then solved to locate and assess the structural damage using continuous ant colony optimization algorithm. The damage is formulated as stiffness reduction factor. The study indicates potentiality of the developed code to solve a wide range of inverse identification problems.
Use of swarm intelligence has proliferated over previous couple of years for damage assessment in large and complex structures using vibration data. Available literatures shows ‘ant colony optimization’ (ACO) and ‘particle swarm optimization’ (PSO) are predominantly
used for solving complex engineering problems including damage identification and quantification problems. The time requirement and accuracy of the vibration based damage identification algorithms depends on early exploration and late exploitation capabilities of soft computing techniques.
However, there are not any literature available comparing algorithms on these bases. In the current study, an inverse problem is constructed using the natural frequency changes which is then solved using ACO and PSO algorithms. The algorithm is run for identification of single and multiple
damages in simple support and cantilever beam structures. It's found that, both ACO and PSO based algorithms are capable of detecting and quantifying the damage accurately within the limited number of iterations. However, ACO based algorithm by virtue of its good exploration capability is
able to identify near optimal region faster than PSO based algorithm, whereas PSO algorithm has good exploitation capability and hence able to provide better damage quantification than ACO algorithm at latter stages of iteration. Further, PSO based algorithm takes less time to reach at required
accuracy level. It is also observed that, the time required for these algorithms are independent of numbers of damage and support conditions.
A simple and robust methodology is presented to identify damages in a structure using changes in vibration data. A comparison is made among damage indicators such as natural frequencies, mode shape data, curvature damage factors and flexibility matrices to study their efficacy in damage assessment. Continuous ant colony optimization (ACOR) technique is used to solve the inverse problem related to damage identification. The outcome of the simulated results demonstrates that the flexibility matrix as a damage indicator provides better damage identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.