Mutations in the Wnt co-receptor LRP5 alter bone mass in humans, but the mechanisms responsible for Wnts actions in bone are unclear. To investigate the role of the classical Wnt signaling pathway in osteogenesis, we generated mice lacking the -catenin or adenomatous polyposis coli (Apc) genes in osteoblasts. Loss of -catenin produced severe osteopenia with striking increases in osteoclasts, whereas constitutive activation of -catenin in the conditional Apc mutants resulted in dramatically increased bone deposition and a disappearance of osteoclasts. In vitro, osteoblasts lacking the -catenin gene exhibited impaired maturation and mineralization with elevated expression of the osteoclast differentiation factor, receptor activated by nuclear factor-B ligand (RANKL), and diminished expression of the RANKL decoy receptor, osteoprotegerin. By contrast, Apc-deficient osteoblasts matured normally but demonstrated decreased expression of RANKL and increased osteoprotegerin. These findings suggest that Wnt/-catenin signaling in osteoblasts coordinates postnatal bone acquisition by controlling the differentiation and activity of both osteoblasts and osteoclasts.
Tumor necrosis factor-␣ (TNF) and the ligand for receptor activator of NF-B (RANKL) are abundant in sites of inflammatory bone erosion. Because these cytokines are potent osteoclastogenic factors and because their signaling pathways are considerably overlapping, we postulated that under pro-inflammatory conditions RANKL and TNF might synergistically orchestrate enhanced osteoclastogenesis via cooperative mechanisms. We found TNF, via TNF type 1 receptor (TNFr1), prompts robust osteoclastogenesis by osteoclast precursors pretreated with RANKL, and deletion of TNFr1 abrogates this response. Enhanced osteoclastogenesis is associated with high expression of otherwise TNF and RANKL-induced mediators, including c-Src, TRAF2, TRAF6, and MEKK-1, levels of which were notably reduced in TNFr1 knockouts. Recruitment of TRAFs and MEKK1 leads to activation of downstream pathways, primarily IB/NF-B, ERKs, and cJun/AP-1. Consistent with impaired osteoclastogenesis and reduced expression of TRAFs and MEKK1, we found that phosphorylation and activation of IB, NF-B, ERKs, and cJun/AP-1 are severely reduced in RANKL-treated TNFr1-null osteoclast precursors compared with wild type counterparts. Finally, we found that TNF and RANKL synergistically up-regulate RANK expression in wild type precursors, whereas basal and stimulated levels of RANK are significantly lower in TNFr1 knockout cells. Our data suggest that exuberant TNF-induced osteoclastogensis is the result of coupling between RANK and TNFr1 and is dependent upon signals transmitted by the latter receptor.
Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is crucial for normal skeletal development and for bone remodeling. Osteogenesis is primarily regulated by bone morphogenetic proteins (BMPs), which activate gene expression programs driven by bone-specific transcription factors. In a mesenchymal stem cell model of osteoblast commitment and differentiation controlled by BMP2, we show that an inhibitor of PI3-kinase or a dominant-negative Akt were as potent in preventing osteoblast differentiation as the IGF binding protein IGFBP5, whereas a Mek inhibitor was ineffective. Conversely, an adenovirus encoding an inducible-active Akt was able to overcome the blockade of differentiation caused by IGFBP5 or the PI3-kinase inhibitor, and could restore normal osteogenesis. Inhibition of PI3-kinase or Akt did not block BMP2-mediated signaling, because the Smad-responsive genes Sox9 and JunB were induced normally under all experimental conditions. When activated during different stages of osteoblast maturation, dominant-negative Akt prevented accumulation of bone-specific alkaline phosphatase and reduced mineralization, and more significantly inhibited the longitudinal growth of metatarsal bones in primary culture by interfering with both chondrocyte and osteoblast development and function. We conclude that an intact IGF-induced PI3-kinase–Akt signaling cascade is essential for BMP2-activated osteoblast differentiation and maturation, bone development and growth, and suggest that manipulation of this pathway could facilitate bone remodeling and fracture repair.
Mesenchymal stem cells are essential for repair of bone and other supporting tissues. Bone morphogenetic proteins (BMPs) promote commitment of these progenitors toward an osteoblast fate via functional interactions with osteogenic transcription factors, including Dlx3, Dlx5, and Runx2, and also can direct their differentiation into bone-forming cells. BMP-2-stimulated osteoblast differentiation additionally requires continual signaling from insulin-like growth factor (IGF)-activated pathways. Here we identify Akt2 as a critical mediator of IGF-regulated osteogenesis. Targeted knockdown of Akt2 in mouse primary bone marrow stromal cells or in a mesenchymal stem cell line, or genetic knockout of Akt2, did not interfere with BMP-2-mediated signaling but resulted in inhibition of osteoblast differentiation at an early step that preceded production of Runx2. In contrast, Akt1-deficient cells differentiated normally. Complete biochemical and morphological osteoblast differentiation was restored in cells lacking Akt2 by adenoviral delivery of Runx2 or by a recombinant lentivirus encoding wild-type Akt2. In contrast, lentiviral Akt1 was ineffective. Taken together, these observations define a specific role for Akt2 as a gatekeeper of osteogenic differentiation through regulation of Runx2 gene expression and indicate that the closely related Akt1 and Akt2 exert distinct effects on the differentiation of mesenchymal precursors.Continual bone remodeling is necessary to maintain bone integrity and function throughout life. In the adult skeleton, optimal bone growth, remodeling, and repair require a balance between bone-forming osteoblasts and bone-resorbing osteoclasts (22,43,58). Osteoclasts are of hematopoietic origin, while osteoblasts are derived from pluripotent mesenchymal stem cells (43,48,50). With aging and under conditions such as osteoporosis, bone formation is diminished relative to the rate of resorption, leading to net bone loss and an increased risk of fractures (43,48). Under both normal and pathological conditions, multiple local and systemic signals derived from hormones, growth factors, and other agents control different aspects of bone remodeling (43, 58). Among key factors that promote bone formation are bone morphogenetic proteins (BMPs) and insulin-like growth factors (IGFs) (30,43,58).BMPs, members of the transforming growth factor  (TGF-) superfamily, are potent inducers of osteoblast differentiation from mesenchymal progenitors (47) and have been used clinically to promote fracture repair (7,25). BMPs bind to specific transmembrane type I and type II receptors and, by sequentially inducing receptor serine kinase activity, stimulate the intracellular mediators, Smad1, -5, and -8 (16), which transmit the BMP signal into the nucleus to regulate target gene transcription (31). Among osteogenic genes induced by BMP-activated Smads are those encoding the osteoblast determination and differentiation factors Dlx3, Dlx5, and Runx2 (14,15,28,29). Runx2 in particular is a master regulator of osteoblast fate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.