This article presents a robust contact-type weed eradicator based on position sensing, digital image processing and microcontroller for weed control in row crops. The imaging system determines the weed density between the crop rows using an image analyser developed in Visual Studio Open computer vision platform for use under varying illumination levels. Graphic user interface was developed for parametric adjustments of the image analyser. The image analyser conducts image analysis after image acquisition and the data is sent via computer serial to microcontroller for pulse width modulation controlled chemical release. Solenoid valves are employed for liquid release on sponge rollers. The contact-type technique overcomes losses due to chemical drift and percolation resulting in an efficient application. The machine locomotion sensing is done through an inductive type proximity switch. The developed system was calibrated in laboratory, followed by extensive field tests. The average weeding efficiency reported was 90.30% with lowest plant damage of 5.74% and 7.91% and high yield coefficients of 26.15 g/plant and 581.74 g/plant in two selected crops of groundnut and maize plantation. The technology saved about 79.50% of herbicide marking it as a robust and eco-friendly technology.
This paper presents a test architecture optimization and test scheduling strategy for TSV based 3D-Stacked ICs (SICs). A test scheduling heuristic, that can fit in both sessionbased and session-less test environments, has been used to select the test concurrency between the dies of the stack. The proposed method minimizes the overall test time of the stack, without violating the system level resource and TSV limits. Particle Swarm Optimization (PSO) based meta search technique has been used to select the resource allocation of individual dies and also their internal test schedules. Incorporation of PSO in two stages of optimization produces a notable reduction in the overall test time of SIC. Experimental results show that upto 51% reduction in test time can be achieved using our strategy, over the existing techniques.
The audio and video synchronization plays an important role in speech recognition and multimedia communication. The audio-video sync is a quite significant problem in live video conferencing. It is due to use of various hardware components which introduces variable delay and software environments. The objective of the synchronization is used to preserve the temporal alignment between the audio and video signals. This paper proposes the audio-video synchronization using spreading codes delay measurement technique. The performance of the proposed method made on home database and achieves 99% synchronization efficiency. The audio-visual signature technique provides a significant reduction in audio-video sync problems and the performance analysis of audio and video synchronization in an effective way. This paper also implements an audio-video synchronizer and analyses its performance in an efficient manner by synchronization efficiency, audio-video time drift and audio-video delay parameters. The simulation result is carried out using mat lab simulation tools and simulink. It is automatically estimating and correcting the timing relationship between the audio and video signals and maintaining the Quality of Service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.