By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 in vitro, and when reconstituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease. Expression of the equivalent H2B mutant in yeast restricted growth at high temperature and led to defective nucleosome-mediated gene repression. Significantly, H2B-E76K expression in the normal mammary epithelial cell line MCF10A increased cellular proliferation, cooperated with mutant PIK3CA to promote colony formation, and caused a significant drift in gene expression and fundamental changes in chromatin accessibility, particularly at gene regulatory elements. Taken together, these data demonstrate that mutations in the globular domains of core histones may give rise to an oncogenic program due to nucleosome dysfunction and deregulation of gene expression. SIGNIFICANCE:Mutations in the core histones frequently occur in cancer and represent a new mechanism of epigenetic dysfunction that involves destabilization of the nucleosome, deregulation of chromatin accessibility, and alteration of gene expression to drive cellular transformation.
Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. P recisely regulated cell proliferation is essential for embryonic development as well as homeostasis in adult organs and tissues, whereas uncontrolled cell proliferation is a hallmark of cancer (1). A more in-depth understanding of the regulatory controls of cell cycle progression is therefore of great interest.The Ecd gene was originally inferred from studies of Drosophila melanogaster ecdysoneless (or ecd) mutants that exhibit defective development due to reduced production of the steroid hormone ecdysone (2). Subsequent cloning of drosophila ecd helped identify a cell-autonomous role of ECD protein in cell survival aside from its non-cell-autonomous role in ecdysis (molting) (3). However, the molecular basis of how ECD functions remains unknown (3). The human ECD homologue was initially identified in a screen of human open reading frames that complemented the S. cerevisiae mutants lacking Gcr2 (glycolysis regulation 2) gene, and it rescued the growth defect caused by reduced glycolytic enzyme activity in Gcr2 mutants. The human gene was initially designated HSGT1 (human suppressor of Gcr2) and was suggested to function as a coactivator of glycolytic gene transcription (4). However, ECD protein bears no structural homology to Gcr2, and a true ECD orthologue is absent in S. cerevisiae, suggesting that ECD likely functions by distinct mechanisms.We identified human ECD in a yeast two-hybrid screen of human mammary epithelial cell cDNA-encoded proteins for novel binding partners of the human papillomavirus 16 (HPV16) E6 oncogene (5). We showed that deletion of Ecd gene in mice causes embryonic lethality, identifying an esse...
Uncontrolled proliferation is one of the hallmarks of breast cancer. We have previously identified the human Ecd protein (human ortholog of Drosophila Ecdysoneless, hereafter called Ecd) as a novel promoter of mammalian cell cycle progression, a function related to its ability to remove the repressive effects of Rb-family tumor suppressors on E2F transcription factors. Given the frequent dysregulation of cell cycle regulatory components in human cancer, we used immunohistochemistry of paraffin-embedded tissues to examine Ecd expression in normal breast tissue versus tissues representing increasing breast cancer progression. Initial studies of a smaller cohort without outcomes information showed that Ecd expression was barely detectable in normal breast tissue and in hyperplasia of breast, but high levels of Ecd were detected in benign breast hyperplasia, ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDCs) of the breast. In this cohort of 104 IDC patients, Ecd expression levels showed a positive correlation with higher grade (P = 0.04). Further analyses of Ecd expression using a larger, independent cohort (954) confirmed these results, with a strong positive correlation of elevated Ecd expression with higher histological grade (P = 0.013), mitotic index (P = 0.032), and Nottingham Prognostic Index score (P = 0.014). Ecd expression was positively associated with HER2/neu (P = 0.002) overexpression, a known marker of poor prognosis in breast cancer. Significantly, increased Ecd expression showed a strong positive association with shorter breast cancer specific survival (BCSS) (P = 0.008) and disease-free survival (DFS) (P = 0.003) in HER2/neu overexpressing patients. Taken together, our results reveal Ecd as a novel marker for breast cancer progression and show that levels of Ecd expression predict poorer survival in Her2/neu overexpressing breast cancer patients.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-011-1946-8) contains supplementary material, which is available to authorized users.
Transcriptional activation by estrogen receptor (ER) is a key step to breast oncogenesis. Given previous findings that ADA3 is a critical component of HAT complexes that regulate ER function and evidence that overexpression of other ER coactivators such as SRC-3 is associated with clinical outcomes in breast cancer, the current study was designed to assess the potential significance of ADA3 expression/localization in human breast cancer patients. In this study, we analyzed ADA3 expression in breast cancer tissue specimens and assessed the correlation of ADA3 staining with cancer progression and patient outcome. Tissue microarrays prepared from large series of breast cancer patients with long-term follow-ups were stained with anti-ADA3 monoclonal antibody using immunohistochemistry. Samples were analyzed for ADA3 expression followed by correlation with various clinicopathological parameters and patients’ outcomes. We report that breast cancer specimens show predominant nuclear, cytoplasmic, or mixed nuclear + cytoplasmic ADA3 staining patterns. Predominant nuclear ADA3 staining correlated with ER+ status. While predominant cytoplasmic ADA3 staining negatively correlated with ER+ status, but positively correlated with ErbB2, EGFR, and Ki67. Furthermore, a positive correlation of cytoplasmic ADA3 was observed with higher histological grade, mitotic counts, Nottingham Prognostic Index, and positive vascular invasion. Patients with nuclear ADA3 and ER positivity have better breast cancer specific survival and distant metastasis free survival. Significantly, cytoplasmic expression of ADA3 showed a strong positive association with reduced BCSS and DMFS in ErbB2+/EGFR+ patients. Although in multivariate analyses ADA3 expression was not an independent marker of survival, predominant nuclear ADA3 staining in breast cancer tissues correlates with ER+ expression and together serves as a marker of good prognosis, whereas predominant cytoplasmic ADA3 expression correlates with ErbB2+/EGFR+ expression and together is a marker of poor prognosis. Thus, ADA3 cytoplasmic localization together with ErbB2+/EGFR+ status may serve as better prognostic marker than individual proteins to predict survival of patients.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-012-2363-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.