BackgroundmiRNAs play a key role in normal physiology and various diseases. miRNA profiling through next generation sequencing (miRNA-seq) has become the main platform for biological research and biomarker discovery. However, analyzing miRNA sequencing data is challenging as it needs significant amount of computational resources and bioinformatics expertise. Several web based analytical tools have been developed but they are limited to processing one or a pair of samples at time and are not suitable for a large scale study. Lack of flexibility and reliability of these web applications are also common issues.ResultsWe developed a Comprehensive Analysis Pipeline for microRNA Sequencing data (CAP-miRSeq) that integrates read pre-processing, alignment, mature/precursor/novel miRNA detection and quantification, data visualization, variant detection in miRNA coding region, and more flexible differential expression analysis between experimental conditions. According to computational infrastructure, users can install the package locally or deploy it in Amazon Cloud to run samples sequentially or in parallel for a large number of samples for speedy analyses. In either case, summary and expression reports for all samples are generated for easier quality assessment and downstream analyses. Using well characterized data, we demonstrated the pipeline’s superior performances, flexibility, and practical use in research and biomarker discovery.ConclusionsCAP-miRSeq is a powerful and flexible tool for users to process and analyze miRNA-seq data scalable from a few to hundreds of samples. The results are presented in the convenient way for investigators or analysts to conduct further investigation and discovery.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-423) contains supplementary material, which is available to authorized users.
Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs) and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel) and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes) and ScriptSeq whole transcriptome protocols respectively, p<2x10-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988) between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads). Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol performed particularly well for lincRNA expression from FFPE libraries, but detection of eSNV and fusion transcripts was less sensitive.
Vascular dysfunction is a hallmark of chronic diseases in elderly. The contribution of the vasculature to lung repair and fibrosis is not fully understood. Here, we performed an epigenetic and transcriptional analysis of lung endothelial cells (ECs) from young and aged mice during the resolution or progression of bleomycin-induced lung fibrosis. We identified the transcription factor ETS-related gene (ERG) as putative orchestrator of lung capillary homeostasis and repair, and whose function is dysregulated in aging. ERG dysregulation is associated with reduced chromatin accessibility and maladaptive transcriptional responses to injury. Loss of endothelial ERG enhances paracrine fibroblast activation in vitro, and impairs lung fibrosis resolution in young mice in vivo. scRNA-seq of ERG deficient mouse lungs reveales transcriptional and fibrogenic abnormalities resembling those associated with aging and human lung fibrosis, including reduced number of general capillary (gCap) ECs. Our findings demonstrate that lung endothelial chromatin remodeling deteriorates with aging leading to abnormal transcription, vascular dysrepair, and persistent fibrosis following injury.
BackgroundChromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-Seq) has been widely used to identify genomic loci of transcription factor (TF) binding and histone modifications. ChIP-Seq data analysis involves multiple steps from read mapping and peak calling to data integration and interpretation. It remains challenging and time-consuming to process large amounts of ChIP-Seq data derived from different antibodies or experimental designs using the same approach. To address this challenge, there is a need for a comprehensive analysis pipeline with flexible settings to accelerate the utilization of this powerful technology in epigenetics research.ResultsWe have developed a highly integrative pipeline, termed HiChIP for systematic analysis of ChIP-Seq data. HiChIP incorporates several open source software packages selected based on internal assessments and published comparisons. It also includes a set of tools developed in-house. This workflow enables the analysis of both paired-end and single-end ChIP-Seq reads, with or without replicates for the characterization and annotation of both punctate and diffuse binding sites. The main functionality of HiChIP includes: (a) read quality checking; (b) read mapping and filtering; (c) peak calling and peak consistency analysis; and (d) result visualization. In addition, this pipeline contains modules for generating binding profiles over selected genomic features, de novo motif finding from transcription factor (TF) binding sites and functional annotation of peak associated genes.ConclusionsHiChIP is a comprehensive analysis pipeline that can be configured to analyze ChIP-Seq data derived from varying antibodies and experiment designs. Using public ChIP-Seq data we demonstrate that HiChIP is a fast and reliable pipeline for processing large amounts of ChIP-Seq data.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2105-15-280) contains supplementary material, which is available to authorized users.
Background Archived formalin fixed paraffin embedded (FFPE) samples are valuable clinical resources to examine clinically relevant morphology features and also to study genetic changes. However, DNA quality and quantity of FFPE samples are often sub-optimal, and resulting NGS-based genetics variant detections are prone to false positives. Evaluations of wet-lab and bioinformatics approaches are needed to optimize variant detection from FFPE samples. Results As a pilot study, we designed within-subject triplicate samples of DNA derived from paired FFPE and fresh frozen breast tissues to highlight FFPE-specific artifacts. For FFPE samples, we tested two FFPE DNA extraction methods to determine impact of wet-lab procedures on variant calling: QIAGEN QIAamp DNA Mini Kit (“QA”), and QIAGEN GeneRead DNA FFPE Kit (“QGR”). We also used negative-control (NA12891) and positive control samples (Horizon Discovery Reference Standard FFPE). All DNA sample libraries were prepared for NGS according to the QIAseq Human Breast Cancer Targeted DNA Panel protocol and sequenced on the HiSeq 4000. Variant calling and filtering were performed using QIAGEN Gene Globe Data Portal. Detailed variant concordance comparisons and mutational signature analysis were performed to investigate effects of FFPE samples compared to paired fresh frozen samples, along with different DNA extraction methods. In this study, we found that five times or more variants were called with FFPE samples, compared to their paired fresh-frozen tissue samples even after applying molecular barcoding error-correction and default bioinformatics filtering recommended by the vendor. We also found that QGR as an optimized FFPE-DNA extraction approach leads to much fewer discordant variants between paired fresh frozen and FFPE samples. Approximately 92% of the uniquely called FFPE variants were of low allelic frequency range (< 5%), and collectively shared a “C > T|G > A” mutational signature known to be representative of FFPE artifacts resulting from cytosine deamination. Based on control samples and FFPE-frozen replicates, we derived an effective filtering strategy with associated empirical false-discovery estimates. Conclusions Through this study, we demonstrated feasibility of calling and filtering genetic variants from FFPE tissue samples using a combined strategy with molecular barcodes, optimized DNA extraction, and bioinformatics methods incorporating genomics context such as mutational signature and variant allelic frequency. Electronic supplementary material The online version of this article (10.1186/s12864-019-6056-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.