Low rank decomposition of tensors is a powerful tool for learning generative models. The uniqueness results that hold for tensors give them a significant advantage over matrices. However, tensors pose serious algorithmic challenges; in particular, much of the matrix algebra toolkit fails to generalize to tensors. Efficient decomposition in the overcomplete case (where rank exceeds dimension) is particularly challenging. We introduce a smoothed analysis model for studying these questions and develop an efficient algorithm for tensor decomposition in the highly overcomplete case (rank polynomial in the dimension). In this setting, we show that our algorithm is robust to inverse polynomial error -a crucial property for applications in learning since we are only allowed a polynomial number of samples. While algorithms are known for exact tensor decomposition in some overcomplete settings, our main contribution is in analyzing their stability in the framework of smoothed analysis.Our main technical contribution is to show that tensor products of perturbed vectors are linearly independent in a robust sense (i.e. the associated matrix has singular values that are at least an inverse polynomial). This key result paves the way for applying tensor methods to learning problems in the smoothed setting. In particular, we use it to obtain results for learning multi-view models and mixtures of axis-aligned Gaussians where there are many more "components" than dimensions. The assumption here is that the model is not adversarially chosen, which we formalize by thinking of the model parameters as being perturbed. We believe this an appealing way to analyze realistic instances of learning problems, since this framework allows us to overcome many of the usual limitations of using tensor methods.
We consider the capacitated k-center problem. In this problem we are given a finite set of locations in a metric space and each location has an associated non-negative integer capacity. The goal is to choose (open) k locations (called centers) and assign each location to an open center to minimize the maximum, over all locations, of the distance of the location to its assigned center. The number of locations assigned to a center cannot exceed the center's capacity. The uncapacitated k-center problem has a simple tight 2-approximation from the 80's. In contrast, the first constant factor approximation for the capacitated problem was obtained only recently by Cygan, Hajiaghayi and Khuller who gave an intricate LP-rounding algorithm that achieves an approximation guarantee in the hundreds. In this paper we give a simple algorithm with a clean analysis and prove an approximation guarantee of 9. It uses the standard LP relaxation and comes close to settling the integrality gap (after necessary preprocessing), which is narrowed down to either 7, 8 or 9. The algorithm proceeds by first reducing to special tree instances, and then uses our best-possible algorithm to solve such instances. Our concept of tree instances is versatile and applies to natural variants of the capacitated k-center problem for which we also obtain improved algorithms. Finally, we give evidence to show that more powerful preprocessing could lead to better algorithms, by giving an approximation algorithm that beats the integrality gap for instances where all non-zero capacities are the same.
The Densest k-subgraph problem (i.e. find a size k subgraph with maximum number of edges), is one of the notorious problems in approximation algorithms. There is a significant gap between known upper and lower bounds for Densest k-subgraph: the current best algorithm gives an ≈ O(n 1/4 ) approximation, while even showing a small constant factor hardness requires significantly stronger assumptions than P = NP. In addition to interest in designing better algorithms, a number of recent results have exploited the conjectured hardness of Densest ksubgraph and its variants. Thus, understanding the approximability of Densest k-subgraph is an important challenge.In this work, we give evidence for the hardness of approximating Densest k-subgraph within polynomial factors. Specifically, we expose the limitations of strong semidefinite programs from SDP hierarchies in solving Densest k-subgraph. Our results include:• A lower bound of Ω n 1/4 / log 3 n on the integrality gap for Ω(log n/ log log n) rounds of the Sherali-Adams relaxation for Densest k-subgraph. This also holds for the relaxation obtained from Sherali-Adams with an added SDP constraint. Our gap instances are in fact Erdös-Renyi random graphs.• For every > 0, a lower bound of n 2/53− on the integrality gap of n Ω( ) rounds of the Lasserre SDP relaxation for Densest k-subgraph, and an n Ω (1) gap for n 1− rounds. Our construction proceeds via a reduction from random instances of a certain Max-CSP over large domains.In the absence of inapproximability results for Densest k-subgraph, our results show that beating a factor of n Ω(1) is a barrier for even the most powerful SDPs, and in fact even beating the best known n 1/4 factor is a barrier for current techniques. Our results indicate that approximating Densest k-subgraph within a polynomial factor might be a harder problem than Unique Games or Small Set Expansion, since these problems were recently shown to be solvable using n Ω(1) rounds of the Lasserre hierarchy, where is the completeness parameter in Unique Games and Small Set Expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.