The Hyperloop is a concept for the high-speed ground transportation of passengers traveling in pods at transonic speeds in a partially evacuated tube. It consists of a low-pressure tube with capsules traveling at both low and high speeds throughout the length of the tube. When a high-speed system travels through a low-pressure tube with a constrained diameter such as in the case of the Hyperloop, it becomes an aerodynamically challenging problem. Airflow tends to get choked at the constrained areas around the pod, creating a high-pressure region at the front of the pod, a phenomenon referred to as the “piston effect.” Papers exploring potential solutions for the piston effect are scarce. In this study, using the Reynolds-Average Navier–Stokes (RANS) technique for three-dimensional computational analysis, the aerodynamic performance of a Hyperloop pod inside a vacuum tube is studied. Further, aerofoil-shaped fins are added to the aeroshell as a potential way to mitigate the piston effect. The results show that the addition of fins helps in reducing the drag and eddy currents while providing a positive lift to the pod. Further, these fins are found to be effective in reducing the pressure build-up at the front of the pod.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.