Abstrak— Buku merupakan media pembelajaran yang paling banyak digunakan sampai saat ini. Namun materi pelajaran yang disampaikan oleh guru dengan media buku tidak dapat diterima oleh siswa secara optimal. Selain itu waktu lamanya proses belajar mengajar juga menjadi kendala dalam proses pembelajaran. Oleh karena itu, diperlukan sebuah media pembelajaran berbasis teknologi yang relevan dengan kebutuhan siswa yang mudah diakses dan dapat mendukung proses pembelajaran baik di dalam maupun di luar kegiatan belajar mengajar di kelas. Salah satunya adalah dengan membuat aplikasi media pembelajaran berbasis android. Penulis menggunakan metode pengumpulan data yaitu: Metode Wawancara dan Metode Studi Pustaka. Sedangkan untuk perancangan dan pembuatan aplikasi penulis menggunakan UML, dan Storyboard yang kemudian diimplementasikan dengan menggunakan Adobe Flash CS6. Hasil perancangannya adalah Aplikasi Pengenalan Komputer Dasar berbasis Android. Aplikasi ini diharapkan mempermudah siswa dalam belajar pengenalan komputer. Tidak hanya disekolah saja, dengan aplikasi Android siswa bisa belajar dimana saja.
The problem that occurs in the application of K-Nearest Neighbors as a classification algorithm is the frequent occurrence of overfitting in data processing. This can be overcome by using cross-validation techniques in evaluating the algorithm model and minimizing overfitting. Then the performance of diabetes prediction accuracy is unknown using the K-Nearest Neighbors algorithm with cross-validation technique. The data used comes from the National Institute of Digestive and Kidney Diabetes in 2021. The case study in this study is to find out the initial screening for diabetes is supported by the results of algorithm accuracy and real time application of streamlit-based users. The purpose of this study was to optimize the accuracy results with a cross validation technique supported by the k-nearest neighbors algorithm in the study of diabetes data. The method used is the k-nearest neighbors algorithm which is supported by cross validation technique for optimal accuracy results. Then the application of a streamlit-based interactive web application for testing the accuracy results used by the user to see the probability that the user has diabetes. The results showed that the optimization of the Cross Validation technique supported by the KNearest Neighbors algorithm model worked well. The results of the confusion matrix using the cross validation technique are more accurate in terms of the advantages of using the cross-validation technique itself. So that the classification report which has a value of 95% is more accurate than the accuracy which is worth 92% because of the use of cross-validation techniques that can minimize overfitting in addition to considerations of the accuracy value and the implementation of streamlit-based interactive web applications for user testing is going well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.