The prerequisites and ingredients for life seem to be abundantly available in the Universe. However, the Universe does not seem to be teeming with life. The most common explanation for this is a low probability for the emergence of life (an emergence bottleneck), notionally due to the intricacies of the molecular recipe. Here, we present an alternative Gaian bottleneck explanation: If life emerges on a planet, it only rarely evolves quickly enough to regulate greenhouse gases and albedo, thereby maintaining surface temperatures compatible with liquid water and habitability. Such a Gaian bottleneck suggests that (i) extinction is the cosmic default for most life that has ever emerged on the surfaces of wet rocky planets in the Universe and (ii) rocky planets need to be inhabited to remain habitable. In the Gaian bottleneck model, the maintenance of planetary habitability is a property more associated with an unusually rapid evolution of biological regulation of surface volatiles than with the luminosity and distance to the host star.
The break-up of the supercontinent Pangaea around 180 Ma has left its imprint on the global distribution of species and resulted in vicariance-driven speciation. Here, we test the idea that the molecular clock dates, for the divergences of species whose geographical ranges were divided, should agree with the palaeomagnetic dates for the continental separations. Our analysis of recently available phylogenetic divergence dates of 42 pairs of vertebrate taxa, selected for their reduced ability to disperse, demonstrates that the divergence dates in phylogenetic trees of continent-bound terrestrial and freshwater vertebrates are consistent with the palaeomagnetic dates of continental separation.
For life-forms like us, the most important feature of Earth is its habitability. Understanding habitability and using that knowledge to locate the nearest habitable planet may be crucial for our survival as a species. During the past decade, expectations that the universe could be filled with habitable planets have been bolstered by the increasingly large overlap between terrestrial environments known to harbor life and the variety of environments on newly detected rocky exoplanets. The inhabited and uninhabited regions on Earth tell us that temperature and the presence of water are the main constraints that can be used in a habitability classification scheme for rocky planets. Our compilation and review of recent exoplanet detections suggests that the fraction of stars with planets is ∼100%, and that the fraction with rocky planets may be comparably large. We review extensions to the circumstellar habitable zone (HZ), including an abiogenesis habitable zone and the galactic habitable zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.