In mammals, endoplasmic reticulum (ER) stress, oxidative stress, and inflammatory responses compose the major defense networks that help the cells adapt to and survive stress conditions caused by biochemical, physiological and pathological stimuli. However, chronic ER stress, oxidative stress, or inflammation have been found to be associated with the initiation and progression of a variety of human diseases in the modern world. Under many pathophysiologic conditions, ER stress response, oxidative stress, and inflammatory responses are integrated and amplified in specialized cell types to facilitate the progression of disease. In the past few decades, ER stress response, oxidative stress, and inflammation as well as their interactive relationships have been hot research topics in biomedicine. In this review, we summarize the recent advance in our understanding of the cross talk between ER stress response, oxidative stress, and inflammation in immunity and in inflammatory and metabolic diseases.
In rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll‐like receptor (TLR)‐mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol‐requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer. Myeloid‐specific deletion of the IRE1α gene protected mice from inflammatory arthritis, and treatment with the IRE1α‐specific inhibitor 4U8C attenuated joint inflammation in mice. IRE1α was required for optimal production of pro‐inflammatory cytokines as evidenced by impaired TLR‐induced cytokine production in IRE1α‐null macrophages and neutrophils. Further analyses demonstrated that tumour necrosis factor (TNF) receptor‐associated factor 6 (TRAF6) plays a key role in TLR‐mediated IRE1α activation by catalysing IRE1α ubiquitination and blocking the recruitment of protein phosphatase 2A (PP2A), a phosphatase that inhibits IRE1α phosphorylation. In summary, we discovered a novel regulatory axis through TRAF6‐mediated IRE1α ubiquitination in regulating TLR‐induced IRE1α activation in pro‐inflammatory cytokine production, and demonstrated that IRE1α is a potential therapeutic target for inflammatory arthritis.
The circadian clock orchestrates diverse physiological processes critical for health and disease. CREB, hepatocyte specific (CREBH) is a liver-enriched, endoplasmic reticulum (ER)–tethered transcription factor known to regulate the hepatic acute phase response and energy homeostasis under stress conditions. We demonstrate that CREBH is regulated by the circadian clock and functions as a circadian regulator of hepatic lipid metabolism. Proteolytic activation of CREBH in the liver exhibits typical circadian rhythmicity controlled by the core clock oscillator BMAL1 and AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway. GSK3β-mediated phosphorylation of CREBH modulates the association between CREBH and the coat protein complex II transport vesicle and thus controls the ER-to-Golgi transport and subsequent proteolytic cleavage of CREBH in a circadian manner. Functionally, CREBH regulates circadian expression of the key genes involved in triglyceride (TG) and fatty acid (FA) metabolism and is required to maintain circadian amplitudes of blood TG and FA in mice. During the circadian cycle, CREBH rhythmically regulates and interacts with the hepatic nuclear receptors peroxisome proliferator–activated receptor α and liver X receptor α as well as with the circadian oscillation activator DBP and the repressor E4BP4 to modulate CREBH transcriptional activities. In conclusion, these studies reveal that CREBH functions as a circadian-regulated liver transcriptional regulator that integrates energy metabolism with circadian rhythm.
Background Hepatic fibrosis, featured by accumulation of excessive extracellular matrix in liver tissues, is associated with metabolic disease and cancer. Inhalation exposure to airborne particulate matter in fine ranges (PM2.5) correlates with pulmonary dysfunction, cardiovascular disease, and metabolic syndrome. In this study, we investigated the effect and mechanism of PM2.5 exposure on hepatic fibrogenesis. Methods Both inhalation exposure of mice and in vitro exposure of specialized cells to PM2.5 were performed to elucidate the effect of PM2.5 exposure on hepatic fibrosis. Histological examinations, gene expression analyses, and genetic animal models were utilized to determine the effect and mechanism by which PM2.5 exposure promotes hepatic fibrosis. Results Inhalation exposure to concentrated ambient PM2.5 induces hepatic fibrosis in mice under the normal chow or high-fat diet. Mice after PM2.5 exposure displayed increased expression of collagens in liver tissues. Exposure to PM2.5 led to activation of the transforming growth factor β (TGFβ)-SMAD3 signaling, suppression of peroxisome proliferator-activated receptor γ (PPARγ), and expression of collagens in hepatic stellate cells. NADPH oxidase plays a critical role in PM2.5-induced liver fibrogenesis. Conclusions Exposure to PM2.5 exerts discernible effects on promoting hepatic fibrogenesis. NADPH oxidase mediates the effects of PM2.5 exposure on promoting hepatic fibrosis.
The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that the expression of C-type lectin receptor scavenger receptor-AI (SR-AI) is crucial for promoting M2-like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely upregulated SR-AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers such as YM-1, arginase-1, and IL-10 via the activation of Mertk associated with inhibition of mTOR. The expression of these molecules was reduced on Mϕ obtained from the livers of infected mice deficient for the gene encoding SR-AI (msr1). Furthermore, in vitro studies using an SR-AI-deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild type (WT) cell line but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR-AI−/− mice following hepatic infection and adoptive transfer of WT bone marrow derived Mϕ conferred protection against fibrosis in these mice. Conclusion: SR-AI expression on liver Mϕ promotes recovery from infection-induced tissue damage by mediating a switch to a pro-resolving Mϕ polarization state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.