We study differentially private mean estimation in a high-dimensional setting. Existing differential privacy techniques applied to large dimensions lead to computationally intractable problems or estimators with excessive privacy loss. Recent work in high-dimensional robust statistics has identified computationally tractable mean estimation algorithms with asymptotic dimension-independent error guarantees. We incorporate these results to develop a strict bound on the global sensitivity of the robust mean estimator. This yields a computationally tractable algorithm for differentially private mean estimation in high dimensions with dimensionindependent privacy loss. Finally, we show on synthetic data that our algorithm significantly outperforms classic differential privacy methods, overcoming barriers to high-dimensional differential privacy. * Equal contribution. Author order determined by a random coin flip of a virtual Canadian Loonie.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.