Noise suppression models running in production environments are commonly trained on publicly available datasets. However, this approach leads to regressions in production environments due to the lack of training/testing on representative customer data. Moreover, due to privacy reasons, developers cannot listen to customer content. This 'ears-off' situation motivates augmenting existing datasets in a privacypreserving manner. In this paper, we present Aura, a solution to make existing noise suppression test sets more challenging and diverse while limiting the sampling budget. Aura is 'ears-off' because it relies on a feature extractor and a metric of speech quality, DNSMOS P.835, both pre-trained on data obtained from public sources. As an application of Aura, we augment a current benchmark test set in noise suppression by sampling audio files from a new batch of data of 20K clean speech clips from Librivox mixed with noise clips obtained from AudioSet. Aura makes the existing benchmark test set harder by 100% in DNSMOS P.835, a 26% improvement in Spearman's rank correlation coefficient (SRCC) compared to random sampling and, identifies 73% out-of-distribution samples to augment the test set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.