Ab
initio second-order algebraic diagrammatic construction (ADC(2)) calculations
using the resolution of the identity (RI) method have been performed
on poly-(p-phenylenevinylene) (PPV) oligomers with
chain lengths up to eight phenyl rings. Vertical excitation energies
for the four lowest π–π* excitations and geometry
relaxation effects for the lowest excited state (S1) are
reported. Extrapolation to infinite chain length shows good agreement
with analogous data derived from experiment. Analysis of the bond
length alternation (BLA) based on the optimized S1 geometry
provides conclusive evidence for the localization of the defect in
the center of the oligomer chain. Torsional potentials have been computed
for the four excited states investigated and the transition densities
divided into fragment contributions have been used to identify excitonic
interactions. The present investigation provides benchmark results,
which can be used (i) as reference for lower level methods and (ii)
give the possibility to parametrize an effective Frenkel exciton Hamiltonian
for quantum dynamical simulations of ultrafast exciton transfer dynamics
in PPV type systems.
The present study explores the structural, charge carrier injection and transport properties of a series of thiophene-pyrrole based oligo-azomethines using density functional theory (DFT) methods. Our findings show that the presence of a bulky substituent adversely affects these properties. However, the electronic effect of substituents may be utilized to tune these properties by substitutions at suitable positions. Values of frontier orbitals, ionization energies, and electron affinities are calculated for each compound to predict the ease of charge injection from metal electrodes to these azomethines and the stabilities of their ionic forms. In addition to having large injection barriers, lack of stability of the anions may hinder the electron injection. However, most of the compounds have excellent hole injection capability. Computation of reorganization energies and electronic couplings followed by charge transfer rates and mobilities show large carrier mobilities for some of the studied compounds. Considering both the injection capability and carrier mobilities, it is found that a thiophene-pyrrole azomethine without any substituent and substituted azomethines with a methyl, methoxy or amine group at the 3 position of the pyrrole ring may act as efficient materials for the hole transport layer.
A global analytical potential energy surface for the ground state of H(3)(-) has been constructed by fitting an analytic function to the ab initio potential energy values computed using coupled cluster singles and doubles with perturbative triples [CCSD(T)] method and Dunning's augmented correlation consistent polarized valence triple zeta basis set. Using this potential energy surface, time-dependent quantum mechanical wave packet calculations were carried out to calculate the reaction probabilities (P(R)) for the exchange reaction H(-)+H(2)(v, j)-->H(2)+H(-), for different initial vibrational (v) and rotational (j) states of H(2), for total angular momentum equal to zero. With increase in v, the number of oscillations in the P(R)(E) plot increases and the oscillations become more pronounced. While P(R) increases with increase in rotational excitation from j=0 to 1, it decreases with further increase in j to 2 over a wide range of energies. In addition, rotational excitation quenches the oscillations in P(R)(E) plots.
A detailed three-dimensional time-dependent quantum dynamical study of the He+H(2) (+)(v=0-3,j=0)-->HeH(+)+H reaction is reported for different vibrational v states of H(2) (+) in its ground rotational (j=0) state over a range of translational E(trans) energies on an accurate ab initio potential energy surface published by Palmieri et al. Plots of reaction probability as a function of total energy E reveal a large number of oscillations indicating the presence of a number of reactive scattering resonances. When averaged over total angular momentum J, some of the oscillations survive, indicating that they may be amenable to experimental observation. A comparison of our present results with our earlier results on the McLaughlin-Thompson-Joseph-Sathyamurthy surface and the experimental results from different research groups reveal a good deal of agreement as well as some discrepancies between theory and experiment at the level of state-selected gas phase dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.