The use of conjugated organic compounds in fluorescence sensing applications has been demonstrated to provide an impressive method to detect energetic nitro-aromatic compounds. The amplified fluorescence quenching in conjugated polymers was used for trace detection of nitro-aromatics. This method, under onephoton excitation, possesses certain limitations such as the use of harmful ultra-violet radiation and relatively high background noise from light scattering. A novel approach that utilizes the additional benefits of nonlinear optical methods involves multiphoton excited fluorescence. This technique employs infrared excitation which is essential for eye-safety applications and allows for deeper penetration through the atmosphere, with relatively low background noise. We herein report, two conjugated polymers which show good multiphoton absorption properties. This is combined with the excellent sensitivity of the multiphoton excited fluorescence to the presence of tri-nitro toluene (TNT). The multiphoton absorption cross-sections are provided and the Stern-Volmer plots are discussed. This technique, in combination with the great analyte sensitivity of various organic materials, promises to be an important sensing technology in the infrared spectral regions.
We studied the effects of shear and its history on suspensions of carbon black (CB) in lithium ion battery electrolyte via simultaneous rheometry and electrical impedance spectroscopy. Ketjen black (KB) suspensions showed shear thinning and rheopexy and exhibited a yield stress. Shear step experiments revealed a two time scale response. The immediate effect of decreasing the shear rate is an increase in both viscosity and electronic conductivity. In a much slower secondary response, both quantities change in the opposite direction, leading to a reversal of the initial change in the conductivity. Stepwise increases in the shear rate lead to similar responses in the opposite direction. This remarkable behavior is consistent with a picture in which agglomerating KB particles can stick directly on contact, forming open structures, and then slowly interpenetrate and densify. The fact that spherical CB particles show the opposite slow response suggests that the fractal structure of the KB primary units plays an important role. A theoretical scheme was used to analyze the shear and time-dependent viscosity and conductivity. Describing the agglomerates as effective hard spheres with a fractal architecture and using an effective medium approximation for the conductivity, we found the changes in the derived suspension structure to be in agreement with our qualitative mechanistic picture. This behavior of KB in flow has consequences for the properties of the gel network that is formed immediately after the cessation of shear: both the yield stress and the electronic conductivity increase with the previously applied shear rate. Our findings thus have clear implications for the operation and filling strategies of semisolid flow batteries.
The issue of macromolecular exciton delocalization length and fluorescence sensing of energetic materials is investigated and modeled from results of nonlinear optical and time-resolved spectroscopy. By using two- and three-photon absorption techniques the fluorescence quenching effects of an organic dendrimer for sensing TNT were carried out. The Stern-Volmer plots for the set of dendrimers were examined and a large quenching constant for the dendrimer G4 was obtained (1400 M(-1)). The quenching constant was found to increase with the dendrimer generation number. The mechanism for the enhanced sensitivity of the dendrimer system was examined by probing the exciton dynamics with femtosecond fluorescence up-conversion. Fluorescence lifetime measurements revealed a multicomponent relaxation that varied with dendrimer generation. Fluorescence anisotropy decay measurements were used to probe the exciton migration length in these dendrimer systems and for the large structure the excitation migration area covers approximately 20 units. All of these results were used in a model that describes the exciton localization length with the fluorescence quenching strength. The use of time-resolved techniques allows for a closer and more detailed description of the mechanism of sensory amplification in organic macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.