The electro-mechanical impedance (EMI) technique has emerged as a cost-effective and non-destructive technique to detect the possible damages in the structure using a piezoelectric transducer, especially, lead zirconate titanate (PZT). The adhesive bond layer plays an important role in the PZT patch-host structure interaction for monitoring structural damage. Two bonding conditions are investigated in this research paper. Primarily, the debonding phenomenon of the adhesive bond layer may misinterpret the EMI response on the damage caused in structure. Subsequently, the investigation included the protective layer at the top of the PZT transducer to avoid sensor degradation. However, the analytical models developed so far have not considered a protective layer at the top of the PZT transducer. This paper presents the novel two-dimensional (2D) analytical model for incorporating debonding concepts and the new refined 2D analytical model to include a protective layer in the study of surface-bonded PZT transducers. The proposed analytical models are verified with the experimental studies. The experimental and analytical results show good agreement, which confirms the effectiveness of the new models. This paper also incorporated the effect of each bonding condition for monitoring structural damage by implementing the EMI technique. For the simulation, the numerical investigations on the PZT transducer bonded on the metallic (aluminum and steel) and concrete blocks are performed using coupled field analysis through finite element (FE) modeling. It is found that each bonding condition has influenced the resulting signatures. The signatures obtained from developed theoretical models and numerical simulations using three-dimensional FE models for each bonding condition are compared to highlight the influence on structural damage detection. The trend of signatures is found to be matching satisfactory. Several parametric studies have been conducted to show the efficacy of the new refined model with a protective layer. It considers the different input properties of an adhesive layer, host structure, and temperature conditions. The influence of debonding of the protective layer is also studied, and the obtained results support the need for a protective layer in the models.
In this article, a multi-sensing technique on surface-mounted PZT sensors is proposed. The investigation was performed on concrete structures to detect and localize structural damage. Multiple smart sensing units (SSU) were adhesively bonded on the top surface of a concrete beam. As each PZT sensor features a small zone of influence, the use of multiple smart sensors is recommended for effective damage detection. The conductance signatures were obtained at different stages in the frequency range of 0–450 kHz. This article also presents an effective methodology for damage localization, which assumes the parallel connection of SSUs in MISO mode. The methodology adopted for structural damage detection is effective, as it is verified by the experimental results performed on concrete structures with multiple surface-mounted PZT sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.