This work presents a novel approach for classification of both balanced and unbalanced dataset by suitably tuning the parameters of radial basis function networks with an additional cost of feature selection. Inputting optimal and relevant set of features to a radial basis function may greatly enhance the network efficiency (in terms of accuracy) at the same time compact it size. In this paper, the authors use information gain theory (a kind of filter approach) for reducing the features and differential evolution for tuning center and spread of radial basis functions. The proposed approach is validated with a few benchmarking highly skewed and balanced dataset retrieved from University of California, Irvine (UCI) repository. The experimental study is encouraging to pursue further extensive research in highly skewed data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.