Recognition of bird species can be a challenging task due to various complex factors. The purpose of this work is to distinguish various local bird species of Bangladesh from the image data. The MobileNet and Inception-v3 model which is mainly an image classification model used here to accomplish this work. Here, we have used a total of four approaches namely Inception-v3 without transfer learning, Inception-v3 with transfer learning, MobileNet without transfer learning, and MobileNet with transfer learning to accomplish the task. To evaluate our experimental results, we have calculated F1 Score besides the model's accuracy and also presented the ROC curve to evaluate the model's output quality. Then we have done a comparison among the applied four approaches. The experimental result has proved the working capability of the applied four approaches. Among these four approaches, MobileNet with transfer learning outperforms the others and obtained a test accuracy of 91.00%. For each of the classes, MobileNet with transfer learning obtained the highest F1 Score than other approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.