Located approximately a hundred kilometres north of Java Subduction Zone, Java Island has a complicated geology and geomorphology. The north zone is dominated by the folded area, the centre is dominated by the active volcanic arc and the south of Java including the study area (Southeast part of Yogyakarta City), is dominated by the uplifted southern mountain. In general, the study area is part of the Bantul's Graben. In the middle part of study area flows the Opak River, which is often associated with normal faults of Opak Fault. The Opak Fault is such a complex fault system which has a complex local fault which can cause worst local site effect when earthquakes occur. However, the geology map of Yogyakarta is the only data that gives the characteristics of Opak Fault roughly. Thus, the effort to identify unchartered fault system needs to be done. The aims of this study are to conduct the outcrop study, to identify the micro faults and to improve the understanding of faults system to support the earthquake hazard and risk assessment. The integrated method of remote sensing, structure from motion (SfM), geographic information system (GIS) and direct outcrop observation was conducted in the study area. Remote sensing was applied to recognize the outcrop location and to extract the nature lineament feature which can be used as fault indicator. The structure from motion was used to support characterising the outcrop in the field, to identify the fault evidence, and to measure the fault displacement on the outcrops. The direct outcrop observation is very useful to reveal the lithofacies characteristics and to reconstruct the lithostratigraphic correlation among the outcrops. Meanwhile, GIS was used to analyse all the data from remote sensing, SfM, and direct outcrop observation. The main findings of this study were as follows: the middle part of study area has the most complicated geologic structure. At least 56 faults evidence with the maximum displacement of 2.39 m was found on the study area. Administratively, the north part of Segoroyoso Village, the middle part of Wonolelo Village, and the middle part of Bawuran village are very unstable and vulnerable to the ground motion amplification due to their faults configuration. The further studies such as geo-electric survey, boreholes survey, and detail geological mapping still need to be conducted in the study area to get better understanding of Opak Fault. Additionally, the carbon testing of charcoal that found in the outcrop and identification of exact location of the ancient eruption source also need to be done.
Background: The Southeast of Yogyakarta City has had the heaviest damages to buildings in the 2006 of Yogyakarta Earthquake disaster. A moderate to strong earthquake of 6.3 Mw shook the 20 km southeast part of the Yogyakarta City early in the morning at 5:54 local time. On top of extensive damage in Yogyakarta and Central Java, more than 5700 people perished; 37,927 people were injured in the collapse of more than 240,396 residential buildings. Furthermore, the earthquake also affected the infrastructure and local economic activities. The total damages and losses because of the earthquake was 29.1 trillion rupiahs or equal to approximately 3.1 million US dollar. Two main factors that caused the severe damages were a dense population and the lack of seismic design of residential buildings. After reconstruction and rehabilitation, the area where the study was conducted grew into a densely populated area. This urbanistic change is feared to be potentially the lead to a great disaster if an earthquake occurs again. Thus, a comprehensive study about building vulnerability is absolutely needed in study area. Therefore, the main objective of this study has been the provision of a probabilistic model of seismic building vulnerability based on the damage data of the last big earthquake. By considering the relationship between building characteristics, site conditions, and the damage level based on probabilistic analysis, this study can offer a better understanding of earthquake damage estimation for residential building in Java.
Background: Indonesia is one of the most earthquake prone countries in the world. More than 14,000 earthquakes of magnitude greater than 5 occurred in Indonesia between 1897 and 2009. Earthquakes are a major cause of slope instability eventually triggering coseismic landslides, which cost 1.5 million US$/ year in Java: one of the most densely islands in Indonesia. This paper aims to assess coseismic landslide susceptibility using Geographic Information System (GIS) on the western flank of Baturagung Escarpment, 8 km southeast of the Yogyakarta City, a data sparse area. Therefore, we have used a probabilistic seismic hazard analysis to calculate the peak ground accelerations, while the coseismic landslide susceptibility analysis was done by the scoring method in the GIS adopted from Mora and Vahrson model (Costa Rica), which is well adopted for data sparse areas. Conclusions: Based on the mapped landslide occurrence, the landslides tend to occur in the zone of moderate CLSL and they are distributed along the border between moderate and low coseismic landslide zone, meaning that the change on local condition could be playing an important role in triggering coseismic landslide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.