In the present study, the leakage of fluid due to gap generation at the contact points is eliminated by introducing interference between the rotor and the stator of an Orbit motor. Interference is incorporated in the system by modifying the roller radius, the chordal thickness, and the pitch circle radius. In an Orbit motor of interference-fit type, the contact points and the rotor center deviate from their original positions as found in an Orbit motor of perfect-fit type. A corrective technique based on minimization of the potential energy of the system is used to obtain the rotor center of an interference-fit motor. The rotor profile is initially generated around the geometrically obtained center of a perfect-fit motor. It is then shifted in the direction of decreasing potential energy, until the rotor center corresponding to minimum energy is attained. The main drawback of introducing interference is the generation of an unbalanced torque which affects the output torque of the motor. Thus, optimization of interference parameters using genetic algorithm is carried out to determine a system for which no gap is generated at the contacts and simultaneously it is ensured that the unbalanced torque ripple amplitude is minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.