Background: There is strong biologic plausibility to support change in albuminuria as a surrogate endpoint for progression of chronic kidney disease (CKD), but empirical evidence to supports its validity in epidemiologic studies is lacking. Methods: We analyzed 28 cohorts including 693,816 individuals (80% with diabetes) and 7,461 end-stage kidney disease (ESKD) events, defined as initiation of kidney replacement therapy. Percent change in albuminuria was quantified during a baseline period of 1, 2 and 3 years using linear regression. Associations with subsequent ESKD were quantified using Cox regression in Coresh et al.
OBJECTIVESodium-glucose cotransporter-2 (SGLT2) inhibitors are new medications that improve cardiovascular and renal outcomes in patients with type 2 diabetes (T2D). However, the Food and Drug Administration has issued alerts regarding increased acute kidney injury (AKI) risk with canagliflozin and dapagliflozin. We aimed to assess the real-world risk of AKI in new SGLT2 inhibitor users in two large health care utilization cohorts of patients with T2D.RESEARCH DESIGN AND METHODSWe used longitudinal data from the Mount Sinai chronic kidney disease registry and the Geisinger Health System cohort. We selected SGLT inhibitor users and nonusers (patients with T2D without SGLT2 inhibitor prescription). We determined AKI by the KDIGO (Kidney Disease: Improving Global Outcomes) definition (AKIKDIGO). We performed 1:1 nearest-neighbor propensity matching and calculated unadjusted hazard ratios (HRs) and adjusted HRs (aHRs; accounting for covariates poorly balanced) for AKI in primary and sensitivity analyses.RESULTSWe identified 377 SGLT2 inhibitor users and 377 nonusers in the Mount Sinai cohort, of whom 3.8 and 9.7%, respectively, had an AKIKDIGO event over a median follow-up time of 14 months. The unadjusted hazards of AKIKDIGO were 60% lower in users (HR 0.4 [95% CI 0.2–0.7]; P = 0.01), which was unchanged (aHR 0.4 [95% CI 0.2–0.7]; P = 0.004) postadjustment. Similarly, we identified 1,207 SGLT2 inhibitor users and 1,207 nonusers in the Geisinger cohort, of whom 2.2 and 4.6% had an AKIKDIGO event. AKIKDIGO unadjusted hazards were lower in users (HR 0.5 [95% CI 0.3–0.8]; P < 0.01) with modest attenuation postadjustment for covariates (aHR 0.6 [95% CI 0.4–1.1]; P = 0.09). These estimates did not qualitatively change across several sensitivity analyses.CONCLUSIONSOur findings do not suggest an increased risk of AKI associated with SGLT2 inhibitor use in patients with T2D in two large health systems.
; for the Chronic Kidney Disease Prognosis Consortium ‡ Background: Although measuring albuminuria is the preferred method for defining and staging chronic kidney disease (CKD), total urine protein or dipstick protein is often measured instead. Objective: To develop equations for converting urine proteincreatinine ratio (PCR) and dipstick protein to urine albumincreatinine ratio (ACR) and to test their diagnostic accuracy in CKD screening and staging. Design: Individual participant-based meta-analysis. Setting: 12 research and 21 clinical cohorts. Participants: 919 383 adults with same-day measures of ACR and PCR or dipstick protein. Measurements: Equations to convert urine PCR and dipstick protein to ACR were developed and tested for purposes of CKD screening (ACR, ≥30 mg/g) and staging (stage A2: ACR, 30 to 299 mg/g; stage A3: ACR, ≥300 mg/g). Results: Median ACR was 14 mg/g (25th to 75th percentile of cohorts, 5 to 25 mg/g). The association between PCR and ACR was inconsistent for PCR values less than 50 mg/g. For higher PCR values, the PCR conversion equations demonstrated moderate sensitivity (91%, 75%, and 87%) and specificity (87%, 89%, and 98%) for screening (ACR, >30 mg/g) and classification into stages A2 and A3, respectively. Urine dipstick categories of trace or greater, trace to +, and ++ for screening for ACR values greater than 30 mg/g and classification into stages A2 and A3, respectively, had moderate sensitivity (62%, 36%, and 78%) and high specificity (88%, 88%, and 98%). For individual risk prediction, the estimated 2-year 4-variable kidney failure risk equation using predicted ACR from PCR had discrimination similar to that of using observed ACR. Limitation: Diverse methods of ACR and PCR quantification were used; measurements were not always performed in the same urine sample. Conclusion: Urine ACR is the preferred measure of albuminuria; however, if ACR is not available, predicted ACR from PCR or urine dipstick protein may help in CKD screening, staging, and prognosis.
Background and objectivesExposure to particulate matter (PM) <2.5 μm in aerodynamic diameter (PM2.5) has been linked to detrimental health effects. This study aimed to describe the relationship between long-term PM2.5 exposure and kidney disease, including eGFR, level of albuminuria, and incident CKD.Design, setting, participants, & measurementsThe study included 10,997 participants from the Atherosclerosis Risk in Communities cohort who were followed from 1996–1998 through 2016. Monthly mean PM2.5 concentrations (μg/m3) were estimated at geocoded participant addresses using geographic information system–based, spatiotemporal generalized additive mixed models—including geospatial covariates such as land use—and then averaged over the 12-month period preceding participant examination. Covariate-adjusted, cross-sectional associations of PM2.5, baseline eGFR, and urinary albumin-creatinine ratio (UACR) were estimated using linear regression. PM2.5 and incident CKD (defined as follow-up eGFR <60 ml/min per 1.73 m2 with ≥25% eGFR decline relative to baseline, CKD-related hospitalization or death based on International Classification of Diseases 9/10 codes, or development of ESKD) associations were estimated using Cox proportional hazards regression. Modeling was stratified by study site, and stratum-specific estimates were combined using random-effects meta-analyses.ResultsBaseline mean participant age was 63 (±6) years and eGFR was 86 (±16) ml/min per 1.73 m2. There was no significant PM2.5-eGFR association at baseline. Each 1-μg/m3 higher annual average PM2.5 was associated with higher UACR after adjusting for demographics, socioeconomic status, and clinical covariates (percentage difference, 6.6%; 95% confidence interval [95% CI], 2.6% to 10.7%). Each 1-μg/m3 higher annual average PM2.5 was associated with a significantly higher risk of incident CKD (hazard ratio, 1.05; 95% CI, 1.01 to 1.10).ConclusionsExposure to higher annual average PM2.5 concentrations was associated with a higher level of albuminuria and higher risk for incident CKD in a community-based cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.