The aim of this article is to apply the method to measure or evaluate the sampling quality of black tea in determining its category or class based on the spectrum of the sampled data. The number of the spectrum of the variable of data reduced by the Principal Components Analysis (PCA) method becomes a new variable that will be classified later by using K-Means Clustering method. This research use 120 sample of tea from Fanning II (F-II), Pekoe Fanning (PFANN), and Broken Orange Pekoe Fannings (BOPF) with 90 sample used for training and 30 sample used for validation. The method and the analysis used in this research gave effective and efficient performance in measuring/evaluating the quality of the black tea sample to determine its class as it showed that the accuracy of K-Means Clustering results is larger than 50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.