Impedance spectroscopy was used to probe the AC conductivity of extremely dilute colloidal suspensions (2.5 × 10–5 ≤ Φw/v ≤ 4.0 × 10–2) comprising of polystyrene microspheres (PS; κa ≫ 1 and ζ = −65 mV), gold nanoparticles (Au NPs; κa > 1 and ζ = −26 mV), and Au-coated PS metallodielectric particles (Au-PS) in HEPES buffer. When AC electric fields of strength 10 mV and 1 MHz were applied via 100 μm gap interdigitated microelectrodes across 10 μL samples, a highly resistive (θcapacitive < 1°) and nonmonotonic response was obtained with particle concentrations at steady state. While the suspensions were less resistive (than the buffer) below a critical concentration, they became more resistive above it. More interestingly, particle–particle interactions took place in suspensions with concentrations as low as 0.005% w/v. We believe this unique behavior is linked to the ion size asymmetry in the HEPES molecule that provides an ideal microenvironment for counterionic polarization around the particles. The exact mechanism of polarization in HEPES, however, still remains elusive as the current theoretical models for simple electrolytes fail to explain our data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.