Gait analysis is used in many fields such as Medical Diagnostics, Osteopathic medicine, Comparative and Sports-related biomechanics, etc. The most commonly used system for capturing gait is the advanced video camera-based passive marker system such as VICON. However, such systems are expensive, and reflective markers on subjects can be intrusive and time-consuming. Moreover, the setup of markers for certain rehabilitation patients, such as people with stroke or spinal cord injuries, could be difficult. Recently, some markerless systems were introduced to overcome the challenges of marker-based systems. However, current markerless systems have low accuracy and pose other challenges in gait analysis with people in long clothing, hiding the gait kinematics. The present work attempts to make an affordable, easy-to-use, accurate gait analysis system while addressing all the mentioned issues. The system in this study uses images from a video taken with a smartphone camera (800 × 600 pixels at an average rate of 30 frames per second). The system uses OpenPose, a 2D real-time multi-person keypoint detection technique. The system learns to associate body parts with individuals in the image using Convolutional Neural Networks (CNNs). This bottom-up system achieves high accuracy and real-time performance, regardless of the number of people in the image. The proposed system is called the “OpenPose based Markerless Gait Analysis System” (OMGait). Ankle, knee, and hip flexion/extension angle values were measured using OMGait in 16 healthy volunteers under different lighting and clothing conditions. The measured kinematic values were compared with a standard video camera based normative dataset and data from a markerless MS Kinect system. The mean absolute error value of the joint angles from the proposed system was less than 90 for different lighting conditions and less than 110 for different clothing conditions compared to the normative dataset. The proposed system is adequate in measuring the kinematic values of the ankle, knee, and hip. It also performs better than the markerless systems like MS Kinect that fail to measure the kinematics of ankle, knee, and hip joints under dark and bright light conditions and in subjects with long robe clothing.
Memristor, a passive circuit element got tremendous research attention for its in-memory computation. In this study, it was identified that controllable resistive state transitions exist within a single memristor. On the basis of this realisation, a simple but unconventional implementation of memristive up and down counters was presented. Furthermore, a dual up-down counter was developed, which can mimic any real-time process variations. To demonstrate its practical application, a counter-based memristive automatic irrigation system was explicated, which provided optimised utilisation of electrical and water resources. The proposed study opens up a new purview in the area of future non-Von Neumann computer architectures and its potential electronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.