Endophytic fungi in symbiotic association with their host plant are well known to improve plant growth and reduce the adverse effects of both biotic and abiotic stresses. Therefore, fungal endophytes are beginning to receive increased attention in an effort to find growth-promoting strains that could be applied to enhance crop yield and quality. In our study, the plant growth-promoting activities of endophytic fungi isolated from various parts of Sophora flavescens (a medicinally important plant in Mongolia and China) have been revealed and investigated. Fungal isolates were identified using molecular taxonomical methods, while their plant growth-promoting abilities were evaluated in plate assays. Altogether, 15 strains were isolated, representing the genera Alternaria, Didymella, Fusarium and Xylogone. Five of the isolates possessed phosphate solubilization activities and twelve secreted siderophores, while all of them were able to produce indoleacetic acid (IAA) in the presence or absence of tryptophan. The endogenous and exogenous accumulation of IAA were also monitored in liquid cultures using the HPLC-MS/MS technique to refine the plate assay results. Furthermore, for the highest IAA producer fungi, the effects of their extracts were also examined in plant bioassays. In these tests, the primary root lengths of the model Arabidopsis thaliana were increased in several cases, while the biomasses were significantly lower than the control IAA treatment. Significant alterations have also been detected in the photosynthetic pigment (chlorophyll-a, -b and carotenoids) content due to the fungal extract treatments, but these changes did not show any specific trends.
Aflatoxins are mycotoxins that are produced by several species of filamentous fungi. In the European Union, the concentration limits for this group of mycotoxins in food and feed products are very low (on the order of parts per billion). Thus, relatively high amounts of these substances in their pure forms are required as reference standards. Chromatographic techniques based on solid stationary phases are generally used to purify these molecules; however, liquid–liquid chromatographic separations may be a promising alternative. Therefore, this study proposes a liquid–liquid chromatographic method for the separation of four aflatoxins and impurities. To optimise the method, numerous biphasic solvent systems (chloroform-, acetone- and acetic acid-based systems) were tested and evaluated in terms of their effectiveness at partitioning aflatoxins; the toluene/acetic acid/water (30:24:50, v/v/v/%) system was found to be the most efficient for application in centrifugal partition chromatographic instrument. Using liquid–liquid instrumental separation, the four aflatoxins, namely B1 (400 mg), B2 (34 mg), G1 (817 mg) and G2 (100 mg), were successfully isolated with 96.3%–98.2% purity from 4.5 L of Aspergillus parasiticus fermented material in a 250 mL centrifugal partition chromatography column. The identities and purities of the purified components were confirmed, and the performance parameters of each separation step and the whole procedure was determined. The developed method could be effectively used to purify aflatoxins for analytical applications.
(1) Background: Bacillus velezensis and Bacillus amyloliquefaciens are closely related members of the “operational group B. amyloliquefaciens”, a taxonomical unit above species level within the ”Bacillus subtilis species complex”. They have similar morphological, physiological, biochemical, phenotypic, and phylogenetic characteristics. Thus, separating these two taxa from each another has proven to be difficult to implement and could not be pushed easily into the line of routine analyses. (2) Methods: The aim of this study was to determine whether whole FAME profiling could be used to distinguish between these two species, using both type strains and environmental isolates. Initially, the classification was determined by partial sequences of the gyrA and rpoB genes and the classified isolates and type strains were considered as samples to develop the identification method, based on FAME profiles. (3) Results: The dissimilarities in 16:0, 17:0 iso, and 17:0 FA components have drawn a distinction between the two species and minor differences in FA 14:0, 15:0 iso, and 16:0 iso were also visible. The statistical analysis of the FA profiles confirmed that the two taxa can be distinguished into two separate groups, where the isolates are identified without misreading. (4) Conclusions: Our study proposes that the developed easy and fast-automated identification tool based on cellular FA profiles can be routinely applied to distinguish B. velezensis and B. amyloliquefaciens.
Table S1. Antimicrobial effects of isolates extracted with chloroform from ferment broth SZMC number Inhibition rate (%) E
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.