Abstract. This note compares two approaches both alternatively used when establishing normality theorems in univariate Extreme Value Theory. When the underlying distribution function (df) is the extremal domain of attraction, it is possible to use representations for the quantile function and regularity conditions (RC), based on these representations, under which strong and weak convergence are valid. It is also possible to use the now fashion second order condition (SOC), whenever it holds, to do the same. Some authors usually favor the first approach (the SOC one) while others are fond of the second approach that we denote as the representational one. This note aims at comparing the two approaches and show how to get from one to the other. The auxiliary functions used in each approach are computed and compared. Statistical applications using simultaneously both approaches are provided. A final comparison is provided.Résumé. Cet article compare deux approches couramment et alternivement utilisées en vue d'établir des résultats de normalité asymptotique en Théorie des Valeurs Extrmes. Lorsque la fonction de répartition (fr) est dans le domaine d'attraction exremal, il est possible d'utiliser des hypothses basées sur les représentations des quantiles, et sous lesquelles des résultats de convergence forte, faible et/ou de loi sontétablis. Il est aussi possible d'utiliser une méthode devenue standard, dite celle du second ordre. Chacune est associéeà des fonctions dites auxilliaires, servantà exprimer les conditions de validité des résultats asymptotiques. L'une de ces deux méthodes est utilisée selon les auteurs. Dans ce papier, nous exposons uneétude comparative et montrons comment passer de l'uneà l'autre par le biais des fonctions auxilliaires. Cetteétude permet une lecture comparative des articles selon l'approche utilisée. Deux exemples, le processus des grands quantiles et le processus de Hill fonctionnel, sont proposés comme exemples statistiques.
The paper deals with the asymptotic laws of functionals of standard exponential random variables. These classes of statistics are closely related to estimators of the extreme value index when the underlying distribution function is in the Weibull domain of attraction. We use techniques based on martingales theory to describe the non Gaussian asymptotic distribution of the aforementioned statistics. We provide results of a simulation study as well as statistical tests that may be of interest with the proposed results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.