Today's control systems such as smart environments have the ability to adapt to their environment in order to achieve a set of objectives (e.g., comfort, security and energy savings). This is done by changing their behaviour upon the occurrence of specific events. Building such a system requires to design and implement autonomic loops that collect events and measurements, make decisions and execute the corresponding actions. The design and the implementation of such loops are made difficult by several factors: the complexity of systems with multiple objectives, the risk of conflicting decisions between multiple loops, the inconsistencies that can result from communication errors and hardware failures and the heterogeneity of the devices. In this paper, we propose a design framework for reliable and self-adaptive systems, where multiple autonomic loops can be composed into complex managers, and we consider its application to smart environments. We build upon the proposed framework a generic autonomic loop which combines an automata-based controller that makes correct and coherent decisions, a transactional execution mechanism that avoids inconsistencies, and an abstraction layer that hides the heterogeneity of the devices. We propose patterns for composition of such loops, in parallel, coordinated, and hierarchically, with benefits from the leveraging of automata-based modular constructs, that provides for guarantees on the correct behaviour of the controlled system. We implement our framework with the transactional middleware LINC, the reactive language Heptagon/BZR and the abstraction framework PUTUTU. A case study in the field of building automation is presented to illustrate the proposed framework.
International audienceAdaptive systems behaviours can be intuitively programmed, using rule based middleware, as a set of rules. The rules verify conditions and perform actions in order to achieve a set of objectives. However, this raises several problems. First, inconsistencies may result from the fact that an action is not actually performed due to a communication error or a hardware failure. Second, the rules may be conflicting and their sequential chaining may lead to undesirable behaviour. This paper proposes an approach that combines transactional and behavioural reliability (i.e. consistency and no conflict) in adaptive middleware. This approach is implemented using the middleware LINC and the automata based language Heptagon/BZR. A case study, in the field of building automation, is presented to illustrate the approach
A smart environment is equipped with numerous devices (i.e., sensors, actuators) that are possibly distributed over different locations (e.g., rooms of a smart building). These devices are automatically controlled to achieve different objectives related, for instance, to comfort, security and energy savings. Controlling smart environment devices is not an easy task. This is due to: the heterogeneity of devices, the inconsistencies that can result from communication errors or devices failure, and the conflicting decisions including those caused by environment dependencies. This paper proposes a design framework for the reliable and environment aware management of smart environment devices. The framework is based on the combination of the rule based middleware LINC and the automata based language Heptagon/BZR (H/BZR). It consists of: an abstraction layer for the heterogeneity of devices, a transactional execution mechanism to avoid inconsistencies and a controller that, based on a generic model of the environment, makes appropriate decisions and avoids conflicts. A case study with concrete devices, in the field of building automation, is presented to illustrate the framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.