Empty Fruit Bunch (EFB) are not being fully utilized for energy production due to its high moisture content, low density, having bulky characteristics and low calorific value. In order to improve characteristic of Elaeis Guineensis empty fruit bunch as fuel, pre-treatment process is necessary to overcome these shortcomings. Therefore, the aim of this research is to examine the effect of torrefaction reaction temperature on the Elaeis Guineensis pellet energy characteristics. The observed pellet qualities include the pellet durability and calorific value of the pellet. The torrefaction of empty fruit bunch was conducted in a fixed-bed reactor at 200°C, 220°C, 240°C and 260°C. The torrefied sample was pelletized, analysed and tested to examine the characteristics of empty fruit bunch biomass as fuel. The pelletization process was carried out by using the cold single press pelletizer and using cassava starch as binder. At higher torrefaction temperature, the decomposition of cellulose and lignin become more prominent. At the torrefaction temperature 260°C, the gross calorific value is the highest due to the removal of moisture, release of volatile matter and the decomposition of biomass components such as hemicellulose, cellulose and lignin which resulted in energy densification. By comparing the torrefied empty fruit bunch at 260°C with the untorrefied empty fruit bunch, it was found that the torrefaction increased the energy densification and pellet qualities of empty fruit bunch that can be utilized as biomass energy sources in renewable energy.
Dedicated energy crop (DEC) serves as a highly promising feedstock for heat and power apart from wastes. Established DEC plant species which include poplar, willow and eucalyptus possess special criteria such as fast growing, high biomass production per unit land area and can be planned in production. Locally available plants such as Leucaena leucocephala and Khaya senegalensis are identified among potential species which can be developed as our own DEC. Therefore, this research was conducted to assess the potential of Khaya senegalensis and Leucaena leucocephala as energy crop. Proximate analysis was executed to establish some important quality of the biomass sample which were moisture content, volatile matters, ash content, and carbon content. Biomass sample was then pelletized and subjected to density and durability testing to evaluate the pellet quality produced. Interestingly, it was found that Khaya senegalensis and Leucaena leucocephala biomass have strong potential to be industrialised as our own dedicated energy crops. The calorific value of both biomass are as good as other established energy crops thereby enlisting these two plant species as Malaysian energy crop.
Khaya senegalensis is fast growing plant, can be planted in marginal land and grow easily in Malaysia. Therefore, it has the potential to be developed as dedicated energy crops. This study was conducted to determine the effect of torrefaction in upgrading the quality of Khaya senegalensis biomass. Torrefaction has been known as one of the most promising pre-treatments for biomass. In this experiment, the biomass sample was torrefied in the muffle furnace at four different temperatures (225, 250, 275 and 300°C) and three durations (30, 60 and 90 minutes). The results show that both torrefaction temperature and duration posed strong impact on the biomass quality. It was found that the volatile matters of the biomass reduce significantly as the torrefaction severity increase. On the other hand, the ash and carbon content increase with the increasing temperature and duration. Most importantly the calorific value of the biomass sample amplifies to 22.26Mj/kg from 16.11Mj/kg of untreated sample when torrefied at 300°C for 90 minutes.
The oil palm tree, which had been producing a plentiful supply of oil palm fronds, had simply been left to rot on the ground. As biomass is a loose substance, pelletization was undertaken so that it could be transported and stored with ease. High-quality pellet production was studied to maximize oil palm frond use. Therefore, the primary goal of this study was to determine the impact of particle size and moisture content on fuel pellet quality. The response surface approach was utilized in this study to optimize the oil palm fronds pellet particle size and the moisture content on the durability, unit density, and calorific value. The particle sizes analyzed were 0.15 mm, 0.500 mm, and 1.00 mm, while the moisture content was 5%, 10.50%, and 16%. The pellets were manufactured using a hydraulic single pellet press, and their calorific value, unit density, and durability were evaluated using a bomb calorimeter, a density formula, and a sieve shaker, respectively. The optimization yielded the maximum desirability (0.5026) for particles with a 16% moisture content and a 0.500 mm particle size. The condition is ideal when the value of desirability is closest to 1.00. It may be concluded that the particle size and moisture content of oil palm fronds affect the durability, unit density, and calorific value of oil palm fronds pellet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.