Polyvinylsilsesquioxanes (PVS) coatings were synthesized by the hydrolytic polycondensation of vinyltrimethoxysilane using hydrochloric acid as a catalyst. Their structure was characterized by Fourier transform IR (FTIR) and the viscosity [in centipoise(cP)] of polyvinylsilsesquioxanes was measured at 298 K. The electrochemical behavior of I-IV coated steel electrodes, of polymer concentration as follows: [I(20%), II(40%) of viscosity 50 cP and III(20%), IV(40%) of viscosity 15 cP], was investigated in 3% NaCl solution using various electrochemical techniques, i.e., opencircuit potential (OCP), potentiodynamic polarization, electrochemical impedance measurements (EIS), and surface examination via scanning electron microscope (SEM) technique. The influence of immersion time on the electroctrochemical behavior of polysilsesquioxane-coated electrodes was also studied. The results of polarization measurements showed that corrosion current density (i corr ) decreases in the order IV [ III [ II [ I. Also, the film resistance is the highest for PVS-coated electrode I as evaluated from EIS measurements. OCP, EIS, and polarization results are in good agreement with each other. The obtained results were confirmed by surface examination using scanning electron microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.