Drought is a natural disaster that has impacts on society, the environment, and the ecosystem. Ethiopia faced many horrible severe drought events in the last few decades. Even though there are some drought-related studies in the country, most of the investigations were focused on meteorological drought analysis. This study was focused on hydrological drought analysis in Ethiopia using the streamflow drought index (SDI). The main objective was to identify drought-prone areas and severe drought events years. Streamflow data were collected from 34 stations to analyze SDI in seasonal (3-month) and annual (12-month) timescales. The analysis implies that seasonal time scale (3-month) hydrological drought has a high frequency of occurrence but short duration, whereas annual (12-month) analysis has a low frequency with a large magnitude. The overall result shows that 1984/85, 1986/87, 2002/03, and 2010/11 were the most severe and extreme drought years in all river basins. The 1980s were found severe and extreme drought years in which most hydrological drought events occurred in the country. The spatial analysis shows that Tekeze, Abbay, and Baro river basins have similar characters; Awash and Rift Valley River basins show relatively the same character, and Genale Dawa and Wabishebele river basins have a similar character. But Omo Gibe River basin has a unique character in which the severe drought occurred in a different year of other river basins.
The definition of drought is very controversial due to its multi-dimensional impact and slow propagation in onset and end. Predicting the accurate occurrence of drought remains a challenging task for researchers. The study focused on hydrological and meteorological drought monitoring and trend analysis in the Abbay river basin, using the streamflow drought index (SDI), standardized precipitation index (SPI), and reconnaissance drought index (RDI), respectively, to fill this research gap. The study also looked into the interrelationships between the two drought indicators. The SDI, SPI, and RDI were calculated using long-term streamflow, precipitation, and temperature data collected from 1973 to 2014. The data were collected from eight streamflow stations and fifteen meteorological gauge stations. DrinC software (Drought Indices Calculator) was used to calculate the SDI, SPI, and RDI values. The result from meteorological drought using SPI12 and RDI12 shows that 1975, 1981, 1984, 1986, 1991, 1994, and 2010 were extreme drought years, whereas 1983, 1984, 2001, and 2010 were the most extreme hydrological drought years based on the SDI12 result. Except for Bahir Dar and Gondar, a severe drought occurs at least once a decade in all stations considered in this study. In general, the SPI, RDI, and SDI results indicated that the study area was exposed to the most prolonged severe and extreme drought from 1981 to 1991. The findings of this study also demonstrated that the occurrence of hydrometeorological droughts in the Abbay river basin has a positive correlation at long time scales of 6 and 12 months. The trend analysis using the Mann–Kendall test implied that there was a significant meteorological drought trend in two stations (Debre Berhan and Fiche) at SPI12 and RDI12 time scale, but for the remaining thirteen stations, there is no trend in all time scales. The hydrological drought trend analysis in the basin on a seasonal (SDI3) and yearly (SDI12) time scale also revealed that three streamflow stations have a positive trend (Kessie, Gummera, and Border). This implies that water resource management is still a vital tool for the sustainable development of the Abbay river basin in the future.
Quantifying the available and useable water is critical work in any water resource study and design project. However, it is challenging to provide a robust and accurate estimation of water use and distribution for better water resource management and planning. This study aims to estimate the water use by different sectors, including water supply and irrigation sectors, by adopting estimated demand and supply water quantity. The current total population of the subbasin has been estimated to be 1.21 million. Thus, in the subbasin, current water use is estimated as follows: domestic and nondomestic water use in the rural area is 3.5 Mm3/year and 0.174 Mm3/year, respectively. The domestic water use of the towns is 12.77 Mm3/year. The industrial water use of the urban areas is 21.2 Mm3/year, whereas the commercial, public, and institutional water use are 1.87 Mm3/year. The real loss for all the water supply uses is 7.8 Mm3/year. Thus, the total current water supply uses are about 47.225 Mm3/year. From the existing irrigation schemes, about 10,254.8 ha areas are irrigated by both smallholders and different investors, growing vegetables, cereals, and fruit trees. The annual irrigation water requirements of these schemes are computed to be 151.55 Mm3. Livestock water demand of the subbasin was assessed and estimated based on the population and consumption rates of the species. Currently, the subbasin has a total livestock population of 1,527,835, and the water demand of which is estimated at 5.3 Mm3 per annum. Hence, the total current water use estimate of the subbasin is 204.1 Mm3.
Understanding hydroclimatic variability and trend for the past four decades in the Upper Tekeze River basin is significant for future sustainable water resource management as it indicates regime shifts in hydrology. Despite its importance for improved and sustainable water allocation for water supply-demand and food security, varying patterns of streamflow and their association with climate change are not well understood in the basin. The main objective of this study was to characterize, quantify, and validate the variability and trends of hydroclimatic variables in the Upper Tekeze River basin at Ghba subbasin using graphical and statistical methods for homogeneous stations for the time period from 1953 to 2017, not uniform at all stations. The rainfall, temperature, and streamflow trends and their relationships were evaluated using the regression method, Mann–Kendall (MK) test, Spearman’s rho (SR) test, Sen’s slope, and correlation analysis. The analysis focused on rainfall, temperature, and streamflow collected from 11 climate and six hydrostations. For simplicity to discuss the interannual and temporal variability the stations were categorized into two clusters according to their record length, category 1 (1983–2017) and category 2 (1953–2017). About 73% and 27% of the rainfall stations exhibited normal to moderate annual rainfall variability. The MK and SR test showed that most of the significant trends in annual rainfall were no change except in one station decreasing and the test also showed no significant change in temperature except in three stations showed an increasing trend. Overall, streamflow trends and change point timings were found to be consistent among the stations and all have shown a decreasing trend. Changes in streamflow without significant change in rainfall suggest factors other than rainfall drive the change. Most likely the observed changes in streamflow regimes could be due to changes in catchment characteristics of the subbasin. These research results offer critical signals on the characteristics, variability and trend of rainfall, temperature, and streamflow necessary to design improved and sustainable water allocation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.