Every petroleum-processing plant produces sewage sludge containing several types of polycyclic aromatic hydrocarbons (PAHs). The degradation of PAHs via physical, biological, and chemical methods is not yet efficient. Among biological methods, the use of marine sponge symbiont bacteria is considered an alternative and promising approach in the degradation of and reduction in PAHs. This study aimed to explore the potential performance of a consortium of sponge symbiont bacteria in degrading anthracene and pyrene. Three bacterial species (Bacillus pumilus strain GLB197, Pseudomonas stutzeri strain SLG510A3-8, and Acinetobacter calcoaceticus strain SLCDA 976) were mixed to form the consortium. The interaction between the bacterial consortium suspension and PAH components was measured at 5 day intervals for 25 days. The biodegradation performance of bacteria on PAH samples was determined on the basis of five biodegradation parameters. The analysis results showed a decrease in the concentration of anthracene (21.89%) and pyrene (7.71%), equivalent to a ratio of 3:1, followed by a decrease in the abundance of anthracene (60.30%) and pyrene (27.52%), equivalent to a ratio of 2:1. The level of pyrene degradation was lower than that of the anthracene due to fact that pyrene is more toxic and has a more stable molecular structure, which hinders its metabolism by bacterial cells. The products from the biodegradation of the two PAHs are alcohols, aldehydes, carboxylic acids, and a small proportion of aromatic hydrocarbon components.
The study aimed to determine the performance of whiteleg shrimp culture in relation to temporal and spatial aspects and characteristics and water quality status. Measurement and sampling of water were carried out before stocking/initial stocking of culture whiteleg shrimp (rainy season) and end of culture/after harvesting of whiteleg shrimp (dry season) at two locations in the coastal area of Bulukumba Regency, namely Bonto Bahari Subdistrict (BB) and Gantarang Subdistrict (GT), and one location as a control, namely in the coastal area of Ujung Loe Subdistrict. Variables measured and analyzed included temperature, salinity, pH, dissolved oxygen, nitrate, nitrite, ammonia, phosphate, total suspended solids, and total organic matter. Data were analyzed by descriptive statistics, multivariate statistics, and non-parametric statistics. Water quality status was determined using the Storet (Storage and Retrieval) method. The results showed that the culture of whiteleg shrimp was technology intensive with a stocking density of 110–220 ind/m2 with productivity between 13.9 and 44.4 tons/ha/cycle. The predicted waste load of N is 28.00 tons/cycle and P reaches 6.61 tons/cycle. Another result was that changes in water quality status during the rainy season were classified as moderately polluted at the BB location and complying with quality standards at the GT location. In the dry season, both locations were categorized as heavily polluted. Variables of water quality that caused the decrease in water quality status in both locations (BB and GT) were observed to increase salinity, nitrate concentration, and ammonia concentration and decreased dissolved oxygen concentration in the dry season. It is recommended to carry out proper feed management, use of probiotics, and increase the capacity and capability of wastewater treatment plants to reduce ammonia and nitrate concentrations in water in coastal areas. It is necessary to determine a more precise time for whiteleg shrimp stocking by reducing the possibility that whiteleg shrimp culture will still occur at the dry season’s peak.
High-quality marine ecosystems are free from global trending pollutants’ (GTP) contaminants. Accuracy and caution are needed during the exploitation of marine resources during marine tourism to prevent future ecological hazards that cause chain effects on aquatic ecosystems and humans. This article identifies exposure to GTP: microplastic (MP); polycyclic aromatic hydrocarbons (PAH); pesticide residue (PR); heavy metal (HM); and medical waste (MW), in marine ecosystems in the marine tourism area (MTA) area and Barrang Caddi Island (BCI) waters. A combination of qualitative and quantitative analysis methods were used with analytical instruments and mathematical formulas. The search results show the average total abundance of MPs in seawater (5.47 units/m3) and fish samples (7.03 units/m3), as well as in the sediment and sponge samples (8.18 units/m3) and (8.32 units/m3). Based on an analysis of the polymer structure, it was identified that the dominant light group was MPs: polyethylene (PE); polypropylene (PP); polystyrene (PS); followed by polyamide-nylon (PA); and polycarbonate (PC). Several PAH pollutants were identified in the samples. In particular, naphthalene (NL) types were the most common pollutants in all of the samples, followed by pyrene (PN), and azulene (AZ). Pb+2 and Cu+2 pollutants around BCI were successfully calculated, showing average concentrations in seawater of 0.164 ± 0.0002 mg/L and 0.293 ± 0.0007 mg/L, respectively, while in fish, the concentrations were 1.811 ± 0.0002 µg/g and 4.372 ± 0.0003 µg/g, respectively. Based on these findings, the BCI area is not recommended as a marine tourism destination.
Polycyclic aromatic hydrocarbons (PAHs) contaminants have toxic, carcinogenic, and mutagenic properties. Screening bacteria from different sources capable of carrying out the biodegradation of (PAHs) is essential for mapping and mobilization purposes and applying them to polluted hydrocarbon environments. The study aims to compare the capacity of PAH biodegradation by two types of bacteria isolated from different sources. The method applied is the interaction between bacterial suspension and pyrene-contaminated waste for 30 days. Biodegradation products in organic compounds were analyzed using gas chromatography/mass spectroscopy (GC/MS) and Fourier transform infrared spectroscopy (FTIR). The analysis results found several indications of the performance of bacterial biodegradation: The capacity of pyrene degradation by Bacillus licheniformis strain ATCC 9789 (Bl) bacteria against pyrene was relatively more dominant than Sphingobacterium sp. strain 21 (Sb) bacteria. The percentage of total bacterial biodegradation for product type Sb was (39.00%), and that of the product of bacterial degradation type Bl (38.29%). The biodegradation products of the test bacteria (Bl and Sb) were relatively similar to pyrene in the form of alcohol and carboxylic acid organic compounds. There was no significant difference in the pyrene biodegradation between Bl and Sb bacteria.
A quality marine ecosystem if it is free from GTP contaminants. Accuracy and caution are needed in the exploitation of marine resources as marine tourism destinations so that in the future, there will be no ecological hazards that cause chain effects, not only on aquatic ecosystems but also on humans. This article identifies exposure to GTP (MP, PAH, PR, HM, MW) in marine ecosystems in the MTA area and BCI waters. The combination of qualitative and quantitative analysis methods uses a combination of analytical instruments and mathematical formulas. The search results show the average total abundance of MP in seawater and fish samples (5.47 units/m3) and (7.03 units/m3), respectively, while in sediment and sponge samples (8.18 units/m3) and (8.32 units/m3). Based on the analysis of the polymer structure, it was identified that the dominant light group MP (PE, PP and PS), followed by PA and PC. Several PAH pollutants were identified in the samples, especially NL types found in all samples, followed by PN and AZ. BCI sea waters are suspected to be exposed to MW and PR. Pollutants of Pb+2 and Cu+2 around BCI were successfully calculated with average concentrations in seawater 0.164 mg/L and 0.294 mg/L, respectively, while in fish, 1.8110 µg/g and 2,452 µg/g, respectively. Based on these findings, the BCI area is not recommended as a marine tourism destination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.