The thermal and photochemical processes associated with the acid-induced conversions of 6-nitroBIPS, SP-1, to form the protonated merocyanine (MC-OH+) were investigated via UV/vis spectrophotometric studies in acetone. It was found that the mechanism of trifluoroacetic acid (TFA)-induced ring-opening of the SP and the rate of MC-OH+ formation follows a general acid catalysis mechanism. In accord with this mechanism, the thermal growth of the acid-induced ring-opened form (MC-OH+) was retarded as the concentration of TFA in the medium was increased. The N-protonated SP, i.e., SP-NH+, is formed in a competing side-equilibrium process as an unreactive "sink", with the nitrogen lone-pair no longer available to drive the ring-opening process and resulting in the inverse rate dependence as a linear 1/kobs vs [HA] plot. Addition of a tertiary amine to MC-OH+ regenerated MC which underwent thermal ring closure to the SP, thus restoring its function as a molecular switch. NMR titration of SP samples showed a downfield shift of the N-substituent peak upon increasing the TFA concentration. However, a saturation behavior could not be observed with SP-1 up to 1 M acid, unlike the model compound, N,N-dimethylaniline (N,N-DMA), which indicates a base strength order of N,N-DMA > SP-1. Further, we have demonstrated that in solvent acetone, on acidification, the normal photo- and thermochromic behavior is reversed; now MC-OH+ is photochemically transformed into SP-H+, which undergoes thermal ring-opening to MC-OH+.
In continuing studies of the effect of solvent and molecular structure on the behavior of photochromic and thermochromic dye molecules, especially spiropyran (SP)-merocyanine (MC) interconversions, we have examined a series of 6′-nitrobenzoindolinospiropyrans (6-nitro-BIPS) with varying N-functionalities (R ) CH 3 , CH 2 CH 2 COOH, CH 2 CH 2 CH 2 SO 3 -, CH 2 CH 2 COO-Cholesteryl). The solvent effect was assessed by following the thermal decay of the photochemically ring-opened merocyanine to the spiropyran (MC H SP) via UV/vis spectroscopy at the λ max of the MC form. It was found that while modification of the N-moiety produced no perturbations in the solvatochromic behavior of these dyes, there was a marked effect on the solvatokinetic behavior. In nonpolar solvents, where the MCs possess predominantly quinoid character (unit central bond order), a constant thermal reversion rate was observed for the MCs with electron-rich N-ligands. This was attributed to electronic and steric interactions between the ligands and the phenoxide moiety. However, in polar solvents the increased zwitterionic character of the MCs (central bond order ∼2) leads to inhibition of the thermal reversion rate for the MCs in this study, independent of N-functionality. The MC H SP interconversion has also been examined by means of semiempirical calculations. These reveal the lowest energy pathway for conversion of the trans-MC to a cis-MC form via sequential bond rotation of the three central dihedral angles (R, β, and γ). The calculations support the observed solvatokinetic behavior, leading to the assignment of the trans/cis thermal isomerization as the rate-determining step in the overall process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.